# Multiple Regression and ANOVA (Ch. 9.2) 

## Multiple

Regression and ANOVA

Sums of squares Advanced inference for multiple regression The F test statistic and $R^{2}$

Will Landau<br>lowa State University

Apr 23, 2013

## Outline

Multiple Regression and ANOVA

## Sums of squares <br> Advanced inference for multiple regression The $F$ test statistic and $R^{2}$

## Multiple Regression and ANOVA

- Analysis of variance (ANOVA): the use of sums of squares to construct a test statistic for comparing nested models.

Sums of squares
Advanced inference
for multiple regression
The F test statistic
and $R^{2}$

- Nested models: a pair of models such that one contains all the parameters of the other.
- Examples:
- Full model: $Y_{i}=\beta_{0}+\beta_{1} x_{i}+\beta_{2} x_{i}^{2}+\varepsilon_{i}$ with the reduced model: $Y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i}$.
- Full model: $Y_{i}=\beta_{0}+\beta_{1} x_{1, i}+\beta_{2} x_{2, i}+\varepsilon_{i}$ with the reduced model: $Y_{i}=\beta_{0}+\varepsilon_{i}$


## Sums of Squares

- Total sum of squares (SST): the total amount of variation in the response.

$$
S S T=\sum_{i}\left(y_{i}-\bar{y}\right)^{2}
$$

Multiple
Regression and
ANOVA
Sums of squares

- Regression sum of squares (SSR): the amount of variation in response explained by the model.

$$
S S R=\sum_{i}\left(\hat{y}_{i}-\bar{y}\right)^{2}
$$

- Error sum of squares (SSE): the amount of variation in the response not explained by the model.

$$
S S E=\sum_{i}\left(y_{i}-\widehat{y}_{i}\right)^{2}
$$

## Properties of Sums of Squares

- They add up:

$$
S S T=S S R+S S E
$$

- We can use them to calculate $R^{2}$ :

$$
R^{2}=\frac{S S T-S S E}{S S T}=\frac{S S R}{S S T}
$$

Multiple
Regression and ANOVA
Sums of squares

- We can calculate the mean squared error (MSE):

$$
M S E=\frac{1}{n-p} S S E
$$

which satisfies:

$$
E(M S E)=\sigma^{2}
$$

$M S E=s_{L F}^{2}$ for simple linear regression and $s_{S F}^{2}$ for multiple regression.

- The regression mean square (MSR) is:

$$
M S R=\frac{1}{p-1} S S R
$$

## Inference: deciding between nested models

- Suppose I have the full model:

$$
Y_{i}=\beta_{0}+\beta_{1} x_{1, i}+\beta_{2} x_{2, i}+\cdots+\beta_{p-1} x_{p-1, i}+\varepsilon_{i}
$$

Multiple
Regression and
ANOVA
Sums of squares
Advanced inference for multiple regression The F test statistic and $R^{2}$

- And an intercept-only reduced model:

$$
Y_{i}=\beta_{0}+\varepsilon_{i}
$$

- I want to do a hypothesis test to decide if the full model works better than the reduced model.
- Does the full model explain significantly more variation in the response than the reduced model?
- This is a job for the sums of squares. model
- $H_{0}: \beta_{1}=\beta_{2}=\cdots=\beta_{p-1}=0$
- $H_{a}$ : not all of the $\beta_{i}$ 's $=0(i=1,2, \ldots, p-1)$

2. $\alpha$ is some sensible value $(<0.1)$.
3. The test statistic is:

$$
K=\frac{S S R /(p-1)}{S S E /(n-p)}=\frac{M S R}{M S E} \sim F_{p-1, n-p}
$$

Assume:

- $H_{0}$ is true.
- The full model is valid with the $\varepsilon_{i}$ 's iid $\mathrm{N}\left(0, \sigma^{2}\right)$

4. Use the F table to experience your moment of truth using the method of critical values.

## Example: stack loss

1. Consider a chemical plant that makes nitric acid from ammonia.

Multiple
Regression and
ANOVA
Sums of squares
Advanced inference
for multiple regression
The F test statistic
and $R^{2}$
2. We want to predict stack loss ( $y, 10$ times the $\%$ ammonia that escapes from the absorption column) using:

- $x_{1}$ : air flow, the rate of operation of the plant
- $x_{2}$, inlet temperature of the cooling water
- $x_{3}$ : (\% circulating acid $\left.-50 \%\right) \times 10$


## Example: stack loss

| $i$, <br> Observation <br> Number | $x_{1 i}$, <br> Air Flow | $x_{2 i}$, <br> Cooling Water <br> Inlet Temperature | $x_{3 i}$, <br> Acid <br> Concentration | $y_{i}$, <br> Stack Loss |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 80 | 27 | 88 | 37 |
| 2 | 62 | 22 | 87 | 18 |
| 3 | 62 | 23 | 87 | 18 |
| 4 | 62 | 24 | 93 | 19 |
| 5 | 62 | 24 | 93 | 20 |
| 6 | 58 | 23 | 87 | 15 |
| 7 | 58 | 18 | 80 | 14 |
| 8 | 58 | 18 | 89 | 14 |
| 9 | 58 | 17 | 88 | 13 |
| 10 | 58 | 18 | 82 | 11 |
| 11 | 58 | 19 | 93 | 12 |
| 12 | 50 | 18 | 89 | 8 |
| 13 | 50 | 18 | 86 | 7 |
| 14 | 50 | 19 | 72 | 8 |
| 15 | 50 | 19 | 79 | 8 |
| 16 | 50 | 20 | 80 | 9 |
| 17 | 56 | 20 | 82 | 15 |

## Example: stack loss

- Given:
- $n=17$
- y: stack loss of nitrogen from the chemical plant.
- $x_{1}$ : air flow, the rate of operation of the plant
- $x_{2}$, inlet temperature of the cooling water
- $x_{3}$ : (\% circulating acid - $\left.50 \%\right) \times 10$
- We'll test the full model:

$$
Y_{i}=\beta_{0}+\beta_{1} x_{1, i}+\beta_{2} x_{2, i}+\beta_{3} x_{3, i}+\varepsilon_{i}
$$

against the reduced model:

$$
Y_{i}=\beta_{0}+\varepsilon_{i}
$$

at $\alpha=0.05$.

## Example: stack loss

- $H_{0}: \beta_{1}=\beta_{2}=\beta_{3}=0$
- Not all of the $\beta_{i}$ 's are $0, i=1,2,3$.

2. $\alpha=0.05$
3. The test statistic is:

Multiple
Regression and
ANOVA
Sums of squares
Advanced inference
for multiple regression
The F test statistic
and $R^{2}$

$$
K=\frac{S S R /(p-1)}{S S E /(n-p)}=\frac{M S R}{M S E} \sim F_{p-1, n-p}
$$

Assume:

- $H_{0}$ is true.
- The full model is valid with the $\varepsilon_{i}$ 's iid $\mathrm{N}\left(0, \sigma^{2}\right)$

Reject $H_{0}$ if $K>F_{p-1, n-p, 1-\alpha}=F_{4-1,17-4,1-0.05}=$ $F_{3,13,0.95}=3.41$.

## Example: stack loss

4. The moment of truth: in JMP, fit the full model and look at the ANOVA table:

## Analysis of Variance

|  |  | Sum of |  |  |
| :--- | ---: | ---: | ---: | ---: |
| Source | DF | Squares | Mean Square | F Ratio |
| Model | 3 | 795.83449 | 265.278 | 169.0432 |
| Error | 13 | 20.40080 | 1.569 | Prob $>$ F |
| C. Total | 16 | 816.23529 |  | $<.0001^{*}$ |

Multiple
Regression and
ANOVA
Sums of squares
Advanced inference
for multiple regression
The F test statistic and $R^{2}$
by reading directly from the table, we can see:

- $p-1=3, n-p=13, n-1=16$
- $S S R=795.83, S S E=20.4, S S T=816.24$
- $M S R=S S R /(p-1)=795.83 / 3=265.28$
- $M S E=S S E /(n-p)=20.4 / 13=1.57$
- $K=M S R / M S E=265.78 / 1.57=169.04$
- Prob $>$ F gives the p-value, $P\left(K>F_{3,13,0.95}\right)<0.0001$.

5. With $K=169.04>3.41$, we reject $H_{0}$ and conclude $H_{a}$.
6. There is overwhelming evidence that at least one of air flow, inlet temperature, and \% circulating acid is important in explaining the variation in stack loss.

## What if I want to compare different nested models?

1. 

- $H_{0}: \beta_{l_{1}}=\beta_{l_{2}}=\cdots=\beta_{l_{k}}=0$
- $H_{a}$ : not all of $\beta_{l_{1}}, \beta_{l_{2}}, \cdots, \beta_{l_{k}}$ are 0 .
- (For example, $H_{0}: \beta_{2}=\beta_{3}=0$ vs
$H_{a}$ : either $\beta_{2}$ or $\beta_{3} \neq 0$ or both. The model is $Y_{i}=\beta_{0}+\beta_{1} x_{i, 1}+\beta_{2} x_{i, 2}+\beta_{3} x_{i, 3}+\beta_{4} x_{i, 4}+\varepsilon_{i}$, and $k=2$ )

2. $\alpha$ is some sensible value.
3. The test statistic is:

$$
K=\frac{\left(S S R_{f}-S S R_{r}\right) / k}{S S E_{f} /(n-p)} \sim F_{k, n-p}
$$

- $S S R_{r}$ is for the reduced model and $S S R_{f}$ is for the full model.
- Of course, we assume $H_{0}$ is true and the full model is valid with the $\varepsilon_{i}$ 's iid $N\left(0, \sigma^{2}\right)$.


## What if I want to compare different nested models?

Multiple
Regression and ANOVA (Ch. 9.2)

Will Landau

## Multiple

Regression and ANOVA
Sums of squares
Advanced inference for multiple regression The F test statistic
4. The moment of truth: construct a combined ANOVA table:
and $R^{2}$

| Source | SS | df | MS | F |
| :--- | :--- | :--- | :--- | :--- |
| Reg (full) | $S S R_{f}$ | $p-1$ |  |  |
| Reg (reduced) | $S S R_{r}$ | $p-k-1$ |  |  |
| Reg (full \| red) | $S S R_{f}-S S R_{r}$ | $k$ | $\frac{S S R_{f}-S S R_{r}}{k}$ | $\frac{M S R_{f \mid r}}{M S E_{f}}$ |
| Error | $S S E_{f}$ | $n-p$ | $\frac{S S E_{f}}{n-p}$ |  |
| Total | $S S T$ | $n-1$ |  |  |

## Example: stack loss

1. $H_{0}: \beta_{2}=\beta_{3}=0$

- $H_{a}$ : either $\beta_{2} \neq 0$ or $\beta_{3} \neq 0$

2. $\alpha=0.05$
3. The test statistic is:

$$
\begin{aligned}
K & =\frac{\left(S S R_{f}-S S R_{r}\right) / k}{S S E_{f} /(n-p)}=\frac{\left(S S R_{f}-S S R_{r}\right) / 2}{S S E_{f} /(17-4)} \\
& =\frac{\left(S S R_{f}-S S R_{r}\right) / 2}{S S E_{f} / 13}
\end{aligned}
$$

- Assume $H_{0}$ is true and the full model is valid with the $\varepsilon_{i}$ 's iid $N\left(0, \sigma^{2}\right)$.
- Then, $K \sim F_{k, n-p}=F_{2,13}$.
- I will reject $H_{0}$ if $K>F_{2,13,0.95}=3.81$.


## Example: stack loss

4. The moment of truth: I look at the ANOVA tables in JMP for both the full model
$\left(Y_{i}=\beta_{0}+\beta_{1} x_{1, i}+\beta_{2} x_{2, i}+\beta_{3} x_{3, i}+\varepsilon_{i}\right):$

* Analysis of Variance

|  | Sum of |  |  |  |
| :--- | ---: | ---: | ---: | ---: |
| Source | DF | Squares | Mean Square | F Ratio |
| Model | 3 | 795.83449 | 265.278 | 169.0432 |
| Error | 13 | 20.40080 | 1.569 | Prob $>$ F |
| C. Total | 16 | 816.23529 |  | $<.0001^{\star}$ |

## Will Landau

Multiple
Regression and ANOVA
Sums of squares
Advanced inference for multiple regression The F test statistic and $R^{2}$
and the reduced model $\left(Y_{i}=\beta_{0}+\beta_{1} x_{1, i}+\varepsilon_{i}\right)$ :
Analysis of Variance

|  |  | Sum of <br> Squares | Mean Square | F Ratio |
| :--- | ---: | ---: | ---: | ---: |
| Source | DF | Squa |  |  |
| Model | 1 | 775.48219 | 775.482 | 285.4318 |
| Error | 15 | 40.75311 | 2.717 | Prob $>$ F |
| C. Total | 16 | 816.23529 |  | $<.0001^{*}$ |

## Example: stack loss

I construct a different ANOVA table for this test:

| Source | SS | df | MS | F |
| :--- | :--- | :--- | :--- | :--- |
| Reg (full) | 795.83 | 4 |  |  |
| Reg (reduced) | 775.48 | 2 |  |  |
| Reg (full \| red) | 20.35 | 2 | 10.18 | 6.48 |
| Error | 20.4 | 13 | 1.57 |  |
| Total | SST | 16 |  |  |

Multiple
Regression and
ANOVA
Sums of squares
Advanced inference
for multiple regression
The F test statistic
and $R^{2}$
5. With $K=6.48>3.81$, I reject $H_{0}$ and conclude $H_{a}$.
6. There is enough evidence to conclude that at least one of inlet temperature and \% circulating acid is associated with stack loss.

## Example: stack loss

- Attempt to eliminate inlet temperature ( $x_{2}$ ) from the model at $\alpha=0.05$. Here is the ANOVA table for the full model:
- Analysis of Variance

Sum of

| Source | DF | Squares | Mean Square | F Ratio |
| :--- | ---: | ---: | ---: | ---: |
| Model | 3 | 795.83449 | 265.278 | 169.0432 |
| Error | 13 | 20.40080 | 1.569 | Prob $>$ F |
| C. Total | 16 | 816.23529 |  | $<.0001^{*}$ |

Multiple
Regression and ANOVA
Sums of squares
Advanced inference for multiple regression The F test statistic and $R^{2}$
and for the reduced model:
Analysis of Variance

|  |  | Sum of <br> Squares | Mean Square | F Ratio |
| :--- | ---: | ---: | ---: | ---: |
| Source | DF | Squ |  |  |
| Model | 2 | 776.84496 | 388.422 | 138.0520 |
| Error | 14 | 39.39033 | 2.814 | Prob $>$ F |
| C. Total | 16 | 816.23529 |  | $<.0001^{*}$ |

## Example: stack loss

1. $H_{0}: \beta_{2}=0, H_{a}: \beta_{2} \neq 0$
2. $\alpha=0.05$
3. The test statistic is:

$$
\begin{aligned}
K & =\frac{\left(S S R_{f}-S S R_{r}\right) / k}{S S E_{f} /(n-p)}=\frac{S S R_{f}-S S R_{r}}{S S E_{f} /(17-4)} \\
& =\frac{S S R_{f}-S S R_{r}}{S S E_{f} / 13}
\end{aligned}
$$

- Assume $H_{0}$ is true and the full model is valid with the $\varepsilon_{i}$ 's iid $N\left(0, \sigma^{2}\right)$.
- Then, $K \sim F_{k, n-p}=F_{1,13}$.
- I will reject $H_{0}$ if $K>F_{1,13,0.95}=4.67$.


## Example: stack loss

4. The moment of truth: I construct a different ANOVA table for this test:

| Source | SS | df | MS | F |
| :--- | :--- | :--- | :--- | :--- |
| Reg (full) | 795.83 | 4 |  |  |
| Reg (reduced) | 776.84 | 3 |  |  |
| Reg (full \| red) | 18.99 | 1 | 18.99 | 12.10 |
| Error | 20.4 | 13 | 1.57 |  |
| Total | SST | 16 |  |  |

5. With $K=12.10>4.67$, we reject $H_{0}$.
6. There is enough evidence to conclude that stack loss varies with inlet temperature.

## Example: stack loss

- The $F$ test for eliminating one parameter is analogous to the $t$ test from before:
v Parameter Estimates

| Term | Estimate | Std Error | t Ratio | Prob $>1$ ll |
| :---: | :---: | :---: | :---: | :---: |
| Intercept | -37.65246 | 4.732051 | -7.96 | <.0001* |
| x 1 | 0.7976856 | 0.067439 | 11.83 | <.0001* |
| x2 | 0.5773405 | 0.165969 | 3.48 | $0.0041^{*}$ |
| x3 | -0.06706 | 0.061603 | -1.09 | 0.2961 |

- The t statistic for $H_{0}: \beta_{2}=0$ vs. $H_{0}: \beta_{2} \neq 0$ is 3.48 .
- But $3.48^{2}=12.1$, which is our $F$ statistic from the ANVOA test!
- Fun fact:

$$
F_{1, \nu}=t_{\nu}^{2}
$$

## The F test statistic and $R^{2}$

- If $K$ is the test statistic from a test of
$H_{0}: \beta_{1}=\beta_{2}=\cdots=\beta_{p-1}=0$ vs. $H_{a}:$ not all of $\beta_{1}, \beta_{2}, \ldots, \beta_{p-1}$ are 0 , then $K$ can be expressed in terms of the coefficient of determination of the full model:

$$
K=\frac{R^{2} /(p-1)}{\left(1-R^{2}\right) /(n-p)}
$$

- For the stack loss example, the full model's $R^{2}=0.975$, and so:

$$
K=\frac{0.975 /(4-1)}{(1-0.975) /(17-4)}=169
$$

## The F test statistic and $R^{2}$

## - Summary of Fit



Multiple
Regression and

## The F test statistic and $R^{2}$

- For $H_{0}: \beta_{1}=\beta_{2}=\cdots=\beta_{p-1}=0$ vs. $H_{a}:$ not all of

Multiple
Regression and
ANOVA
Sums of squares $\beta_{1}, \beta_{2}, \ldots, \beta_{p-1}$,

$$
\begin{aligned}
K & =\frac{S S R \frac{1}{p-1}}{S S E \frac{1}{n-p}}=\frac{\frac{S S R}{} \frac{1}{p-1}}{\frac{S S E}{\operatorname{SST} \frac{1}{n-p}}=\frac{\frac{S S R}{} \frac{1}{p-1}}{\frac{S S T-S S R}{S S T} \frac{1}{n-p}}=\frac{\frac{S S R}{S S} \frac{1}{p-1}}{\left(1-\frac{S S R}{S S T}\right) \frac{1}{n-p}}} \\
& =\frac{R^{2} \frac{1}{p-1}}{\left(1-R^{2} \frac{1}{n-p}\right.}
\end{aligned}
$$

## The F test statistic and $R^{2}$

- If $K$ is the test statistic from a test of
$H_{0}: \beta_{l_{1}}=\beta_{l_{2}}=\cdots=\beta_{l_{k}}=0$ vs. $H_{a}:$ not all of
$\beta_{l_{1}}, \beta_{l_{2}}, \ldots, \beta_{l_{k}}$ are 0 , then $K$ can be expressed in terms
Multiple
Regression and
ANOVA
of the coefficient of determination of the full model
Sums of squares
Advanced inference
for multiple regression
The $F$ test statistic $\left(R_{f}^{2}\right)$ and that of the reduced model $\left(R_{r}^{2}\right)$ :

$$
K=\frac{\left(R_{f}^{2}-R_{r}^{2}\right) / k}{\left(1-R_{f}^{2}\right) /(n-p)}
$$

- For the stack loss example when we tested

$$
H_{0}: \beta_{2}=\beta_{3}=0, R_{f}^{2}=0.975 \text { and } R_{r}^{2}=0.95
$$

$$
K=\frac{(0.975-0.95) / 2}{(1-0.975) /(17-4)}=6.50
$$

which is close to the test statistic of 6.48 that we calculated before.

## The F test statistic and $R^{2}$

- When we tested $H_{0}: \beta_{2}=0, R_{r}^{2}$ was 0.9517 , so:

$$
K=\frac{(0.975-0.9517) / 1}{(1-0.975) /(17-4)}=12.117
$$

which is close to the test statistic of 12.10 that was calculated directly from the ANOVA table.

## The F test statistic and $R^{2}$

Multiple
Regression and ANOVA
Sums of squares

$$
\begin{aligned}
K & =\frac{\left(S S R_{f}-S S R_{r}\right) \frac{1}{k}}{S S E_{f} \frac{1}{n-p}}=\frac{S S R_{f}-S S R_{r}}{S S T} \frac{1}{k} \\
\frac{S S E_{f}}{S S T} \frac{1}{n-p} & =\frac{\left(\frac{S S R_{f}}{S S T}-\frac{S S R_{r}}{S S T}\right) \frac{1}{k}}{\frac{S S T-S S R_{f}}{S S T} \frac{1}{n-p}} \\
& =\frac{\left(\frac{S S R_{f}}{S S T}-\frac{S S R_{r}}{S S T}\right) \frac{1}{k}}{\left(1-\frac{S S R_{f}}{S S T}\right) \frac{1}{n-p}}=\frac{\left(R_{f}^{2}-R_{r}^{2}\right) \frac{1}{k}}{\left(1-R_{f}^{2}\right) \frac{1}{n-p}}
\end{aligned}
$$

