Multiple Regression and ANOVA (Ch. 9.2)

Will Landau

Iowa State University

Apr 23, 2013

Multiple Regression and ANOVA (Ch. 9.2)

Will Landau

Multiple Regression and ANOVA

Outline

Multiple Regression and ANOVA

Sums of squares Advanced inference for multiple regression The F test statistic and R^2 Multiple Regression and ANOVA (Ch. 9.2)

Will Landau

Multiple Regression and ANOVA

Multiple Regression and ANOVA

- Analysis of variance (ANOVA): the use of sums of squares to construct a test statistic for comparing nested models.
- Nested models: a pair of models such that one contains all the parameters of the other.
 - Examples:
 - Full model: $Y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \varepsilon_i$ with the reduced model: $Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$.
 - ► Full model: $Y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \varepsilon_i$ with the reduced model: $Y_i = \beta_0 + \varepsilon_i$

Multiple Regression and ANOVA (Ch. 9.2)

Will Landau

Multiple Regression and ANOVA

Sums of squares

Advanced inference for multiple regressior The F test statistic and R²

Sums of Squares

Total sum of squares (SST): the total amount of variation in the response.

$$SST = \sum_{i} (y_i - \overline{y})^2$$

Regression sum of squares (SSR): the amount of variation in response explained by the model.

$$SSR = \sum_{i} (\widehat{y}_i - \overline{y})^2$$

Error sum of squares (SSE): the amount of variation in the response *not* explained by the model.

$$SSE = \sum_{i} (y_i - \widehat{y}_i)^2$$

© Will Landau

Multiple Regression and ANOVA (Ch. 9.2)

Will Landau

Multiple Regression and ANOVA

Properties of Sums of Squares

They add up:

$$SST = SSR + SSE$$

▶ We can use them to calculate R²:

$$R^2 = \frac{SST - SSE}{SST} = \frac{SSR}{SST}$$

We can calculate the mean squared error (MSE):

$$MSE = \frac{1}{n-p}SSE$$

which satisfies:

 $E(MSE) = \sigma^2$ $MSE = s_{LF}^2$ for simple linear regression and s_{SF}^2 for multiple regression.

The regression mean square (MSR) is:

$$MSR = \frac{1}{p-1}SSR$$

© Will Landau

Multiple Regression and ANOVA (Ch. 9.2)

Will Landau

Multiple Regression and ANOVA

Inference: deciding between nested models

Suppose I have the full model:

$$Y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \dots + \beta_{p-1} x_{p-1,i} + \varepsilon_i$$

And an intercept-only reduced model:

 $Y_i = \beta_0 + \varepsilon_i$

I want to do a hypothesis test to decide if the full model works better than the reduced model.

- Does the full model explain significantly more variation in the response than the reduced model?
- This is a job for the sums of squares.

Multiple Regression and ANOVA (Ch. 9.2)

Will Landau

Multiple Regression and ANOVA

The hypothesis test: intercept-only model vs. full model

1.

$$H_0: \beta_1 = \beta_2 = \dots = \beta_{p-1} = 0$$

 $H_a: \text{ not all of the } \beta_i \text{'s} = 0 (i = 1, 2, \dots, p-1)$

2. α is some sensible value (< 0.1).

3. The test statistic is:

$$K = {SSR/(p-1) \over SSE/(n-p)} = {MSR \over MSE} \sim F_{p-1, n-p}$$

Assume:

- ► H₀ is true.
- The full model is valid with the ε_i 's iid N(0, σ^2)
- 4. Use the F table to experience your moment of truth using the method of critical values.

Multiple Regression and ANOVA (Ch. 9.2)

Will Landau

Multiple Regression and ANOVA

- 1. Consider a chemical plant that makes nitric acid from ammonia.
- 2. We want to predict stack loss (y, 10 times the % ammonia that escapes from the absorption column) using:
 - ▶ x₁: air flow, the rate of operation of the plant
 - x₂, inlet temperature of the cooling water
 - ▶ x₃: (% circulating acid 50%)×10

Multiple Regression and ANOVA (Ch. 9.2)

Will Landau

Multiple Regression and ANOVA

<i>i</i> , Observation	<i>x</i> _{1<i>i</i>} ,	x_{2i} , Cooling Water	x _{3i} , Acid	<i>y</i> _{<i>i</i>} ,
Number	Air Flow	Inlet Temperature	Concentration	Stack Loss
1	80	27	88	37
2	62	22	87	18
3	62	23	87	18
4	62	24	93	19
5	62	24	93	20
6	58	23	87	15
7	58	18	80	14
8	58	18	89	14
9	58	17	88	13
10	58	18	82	11
11	58	19	93	12
12	50	18	89	8
13	50	18	86	7
14	50	19	72	8
15	50	19	79	8
16	50	20	80	9
17	56	20	82	15

Multiple Regression and ANOVA (Ch. 9.2)

Will Landau

Multiple Regression and ANOVA

Sums of squares Advanced inference for multiple regression The F test statistic and R^2

© Will Landau

Given:

- ▶ *n* = 17
- ▶ y: stack loss of nitrogen from the chemical plant.
- ▶ x₁: air flow, the rate of operation of the plant
- x₂, inlet temperature of the cooling water
- ► x₃: (% circulating acid 50%)×10
- We'll test the full model:

$$Y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \beta_3 x_{3,i} + \varepsilon_i$$

against the reduced model:

$$Y_i = \beta_0 + \varepsilon_i$$

at $\alpha = 0.05$.

Multiple Regression and ANOVA (Ch. 9.2)

Will Landau

Multiple Regression and ANOVA

- **2**. $\alpha = 0.05$
- 3. The test statistic is:

$$K = \frac{SSR/(p-1)}{SSE/(n-p)} = \frac{MSR}{MSE} \sim F_{p-1, n-p}$$

Assume:

- ► H₀ is true.
- The full model is valid with the ε_i 's iid N(0, σ^2)

Reject H_0 if $K > F_{p-1, n-p, 1-\alpha} = F_{4-1, 17-4, 1-0.05} = F_{3,13,0.95} = 3.41.$

Multiple Regression and ANOVA (Ch. 9.2)

Will Landau

Multiple Regression and ANOVA

4. The moment of truth: in JMP, fit the full model and look at the **ANOVA table**:

			5,		
▼	Analy	sis of	Variance	•	
	Source	DF	Squares	Mean Square	F Ratio
	Model	3	795.83449	265.278	169.0432
	Error	13	20.40080	1.569	Prob > F
	C. Total	16	816.23529		<.0001*

by reading directly from the table, we can see:

▶
$$p-1=3$$
, $n-p=13$, $n-1=16$

- ► *SSR* = 795.83, *SSE* = 20.4, *SST* = 816.24
- MSR = SSR/(p-1) = 795.83/3 = 265.28
- MSE = SSE/(n-p) = 20.4/13 = 1.57
- K = MSR/MSE = 265.78/1.57 = 169.04
- Prob>F gives the p-value, $P(K > F_{3,13,0.95}) < 0.0001$.
- 5. With K = 169.04 > 3.41, we reject H_0 and conclude H_a .
- There is overwhelming evidence that at least one of air flow, inlet temperature, and % circulating acid is important in explaining the variation in stack loss.

© Will Landau

Multiple Regression and ANOVA (Ch. 9.2)

Will Landau

Multiple Regression and ANOVA

What if I want to compare different nested models?

1.

$$\begin{array}{l} H_0: \beta_{l_1} = \beta_{l_2} = \cdots = \beta_{l_k} = 0 \\
 \end{array}$$

$$\begin{array}{l} H_a: \text{ not all of } \beta_{l_1}, \beta_{l_2}, \cdots, \beta_{l_k} \text{ are } 0. \\
 \end{array}$$

$$\begin{array}{l} (\text{For example, } H_0: \beta_2 = \beta_3 = 0 \text{ vs} \\
 H_a: \text{ either } \beta_2 \text{ or } \beta_3 \neq 0 \text{ or both. The model is} \\
 Y_i = \beta_0 + \beta_1 x_{i,1} + \beta_2 x_{i,2} + \beta_3 x_{i,3} + \beta_4 x_{i,4} + \varepsilon_i, \text{ and} \\
 k = 2) \end{array}$$

- 2. α is some sensible value.
- 3. The test statistic is:

$$K = \frac{(SSR_f - SSR_r)/k}{SSE_f/(n-p)} \sim F_{k, n-p}$$

- SSR_r is for the reduced model and SSR_f is for the full model.
- Of course, we assume H₀ is true and the full model is valid with the ε_i's iid N(0, σ²).

Multiple Regression and ANOVA (Ch. 9.2)

Will Landau

Multiple Regression and ANOVA

What if I want to compare different nested models?

4. The moment of truth: construct a combined ANOVA table:

Source	SS	df	MS	F
Reg (full)	SSR _f	p-1		
Reg (reduced)	SSR _r	p-k-1		
$Reg\;(full\midred)$	$SSR_f - SSR_r$	k	$\frac{SSR_f - SSR_r}{k}$	$\frac{MSR_{f r}}{MSE_{f}}$
Error	SSE_{f}	n-p	$\frac{SSE_f}{n-p}$	
Total	SST	n-1		

Multiple Regression and ANOVA (Ch. 9.2)

Will Landau

Multiple Regression and ANOVA

1.

$$H_0: \beta_2 = \beta_3 = 0$$

 $H_a: \text{ either } \beta_2 \neq 0 \text{ or } \beta_3 \neq 0$

- **2**. $\alpha = 0.05$
- 3. The test statistic is:

$$K = \frac{(SSR_f - SSR_r)/k}{SSE_f/(n-p)} = \frac{(SSR_f - SSR_r)/2}{SSE_f/(17-4)}$$
$$= \frac{(SSR_f - SSR_r)/2}{SSE_f/13}$$

- Assume H_0 is true and the full model is valid with the ε_i 's iid $N(0, \sigma^2)$.
- Then, $K \sim F_{k, n-p} = F_{2,13}$.
- I will reject H_0 if $K > F_{2,13,0.95} = 3.81$.

Multiple Regression and ANOVA (Ch. 9.2)

Will Landau

Multiple Regression and ANOVA

4. The moment of truth: I look at the ANOVA tables in JMP for both the full model
(Y_i = β₀ + β₁x_{1,i} + β₂x_{2,i} + β₃x_{3,i} + ε_i):

		J.,					
Analysis of Variance							
Sum of							
Source	DF	Squares	Mean Square	F Ratio			
Model	3	795.83449	265.278	169.0432			
Error	13	20.40080	1.569	Prob > F			
C. Total	16	816.23529		<.0001*			

and the reduced model $(Y_i = \beta_0 + \beta_1 x_{1,i} + \varepsilon_i)$:

Analysis of Variance						
•						
Source	DF			F Ratio		
Model	1	775.48219	775.482	285.4318		
Error	15	40.75311	2.717	Prob > F		
C. Total	16	816.23529		<.0001*		

Multiple Regression and ANOVA (Ch. 9.2)

Will Landau

Multiple Regression and ANOVA

I construct a different ANOVA table for this test:

Source	SS	df	MS	F
Reg (full)	795.83	4		
Reg (reduced)	775.48	2		
Reg (full red)	20.35	2	10.18	6.48
Error	20.4	13	1.57	
Total	SST	16		

5. With K = 6.48 > 3.81, I reject H_0 and conclude H_a .

6. There is enough evidence to conclude that at least one of inlet temperature and % circulating acid is associated with stack loss.

Will Landau

Multiple Regression and ANOVA

Attempt to eliminate inlet temperature (x₂) from the model at α = 0.05. Here is the ANOVA table for the full model:

Analysi	s of	Variance	•	
Source	DF	Mean Square	F Ratio	
Model	3	795.83449		169.0432
Error C. Total	13 16	20.40080 816.23529	1.569	Prob > F <.0001*

and for the reduced model:

₹,	Analys	sis of \	/ariance		
	ource	DF	Sum of	Mean Square	E Patio
-	lodel		776.84496		138.0520
E	rror	14	39.39033	2.814	Prob > F
C	. Total	16	816.23529		<.0001*

Multiple Regression and ANOVA (Ch. 9.2)

Will Landau

Multiple Regression and ANOVA

1.
$$H_0: \beta_2 = 0, \ H_a: \beta_2 \neq 0$$

- **2**. $\alpha = 0.05$
- 3. The test statistic is:

$$K = \frac{(SSR_f - SSR_r)/k}{SSE_f/(n-p)} = \frac{SSR_f - SSR_r}{SSE_f/(17-4)}$$
$$= \frac{SSR_f - SSR_r}{SSE_f/13}$$

• Assume H_0 is true and the full model is valid with the ε_i 's iid $N(0, \sigma^2)$.

• Then,
$$K \sim F_{k, n-p} = F_{1,13}$$
.

• I will reject H_0 if $K > F_{1,13,0.95} = 4.67$.

Multiple Regression and ANOVA (Ch. 9.2)

Will Landau

Multiple Regression and ANOVA

4. The moment of truth: I construct a different ANOVA table for this test:

Source	SS	df	MS	F
Reg (full)	795.83	4		
Reg (reduced)	776.84	3		
$Reg(full \mid red)$	18.99	1	18.99	12.10
Error	20.4	13	1.57	
Total	SST	16		

- 5. With K = 12.10 > 4.67, we reject H_0 .
- 6. There is enough evidence to conclude that stack loss varies with inlet temperature.

Multiple Regression and ANOVA (Ch. 9.2)

Will Landau

Multiple Regression and ANOVA

The F test for eliminating one parameter is analogous to the t test from before:

▼	Parame	eter Estir	nates		
	Term	t Ratio	Prob>iti		
	Intercept	-37.65246	4.732051	-7.96	<.0001*
	x1	0.7976856	0.067439	11.83	<.0001*
	x2	0.5773405	0.165969	3.48	0.0041*
1	x3	-0.06706	0.061603	-1.09	0.2961

- The t statistic for H_0 : $\beta_2 = 0$ vs. H_0 : $\beta_2 \neq 0$ is 3.48.
- But 3.48² = 12.1, which is our F statistic from the ANVOA test!
- Fun fact:

$$F_{1, \nu} = t_{\nu}^2$$

Multiple Regression and ANOVA (Ch. 9.2)

Will Landau

Multiple Regression and ANOVA

If K is the test statistic from a test of
 H₀: β₁ = β₂ = ··· = β_{p-1} = 0 vs. H_a: not all of
 β₁, β₂, ..., β_{p-1} are 0, then K can be expressed in terms of the coefficient of determination of the full model:

$$K = rac{R^2/(p-1)}{(1-R^2)/(n-p)}$$

$$K = \frac{0.975/(4-1)}{(1-0.975)/(17-4)} = 169$$

Multiple Regression and ANOVA (Ch. 9.2)

Will Landau

Multiple Regression and ANOVA

v	Summar	y of	fFit			
	RSquare			0.975006		
	RSquare Adj			0.969238		
	Root Mean Square Error			1.252714		
	Mean of Response			14.47059		
	Observation	s (or	Sum Wgts)	17		
v	Analysis of Variance		e			
	Sum of					
	Source	DF	Squares	Mean Sq	uare	F Ratio
	Model	3	795.83449	265	.278	169.0432
	Error	13	20.40080	1	.569	Prob > F

816.23529

16

Multiple Regression and ANOVA (Ch. 9.2)

Will Landau

Regression and

The F test statistic and R^2

C. Total

<.0001*

For
$$H_0: \beta_1 = \beta_2 = \cdots = \beta_{p-1} = 0$$
 vs. $H_a:$ not all of $\beta_1, \beta_2, \dots, \beta_{p-1}$,

$$\begin{split} \mathcal{K} &= \frac{SSR \frac{1}{p-1}}{SSE \frac{1}{n-p}} = \frac{\frac{SSR}{SST} \frac{1}{p-1}}{\frac{SSE}{SST} \frac{1}{p-1}} = \frac{\frac{SSR}{SST} \frac{1}{p-1}}{\frac{SST-SSR}{SST} \frac{1}{n-p}} = \frac{\frac{SSR}{SST} \frac{1}{p-1}}{\left(1 - \frac{SSR}{SST}\right) \frac{1}{n-p}} \\ &= \frac{R^2 \frac{1}{p-1}}{\left(1 - R^2\right) \frac{1}{n-p}} \end{split}$$

Multiple Regression and ANOVA (Ch. 9.2)

Will Landau

Multiple Regression and ANOVA

▶ If K is the test statistic from a test of $H_0: \beta_{l_1} = \beta_{l_2} = \cdots = \beta_{l_k} = 0$ vs. H_a : not all of $\beta_{l_1}, \beta_{l_2}, \dots, \beta_{l_k}$ are 0, then K can be expressed in terms of the coefficient of determination of the full model (R_f^2) and that of the reduced model (R_r^2) :

$$K = rac{(R_f^2 - R_r^2)/k}{(1 - R_f^2)/(n - p)}$$

For the stack loss example when we tested $H_0: \beta_2 = \beta_3 = 0, R_f^2 = 0.975$ and $R_r^2 = 0.95$.

$${\cal K}=rac{(0.975-0.95)/2}{(1-0.975)/(17-4)}=6.50$$

which is close to the test statistic of 6.48 that we calculated before.

C Will Landau

Multiple Regression and ANOVA (Ch. 9.2)

Will Landau

Multiple Regression and ANOVA

• When we tested H_0 : $\beta_2 = 0$, R_r^2 was 0.9517, so:

$$\mathcal{K} = rac{(0.975 - 0.9517)/1}{(1 - 0.975)/(17 - 4)} = 12.117$$

which is close to the test statistic of 12.10 that was calculated directly from the ANOVA table.

Multiple Regression and ANOVA (Ch. 9.2)

Will Landau

Multiple Regression and ANOVA

$$\begin{split} \mathcal{K} &= \frac{(SSR_{f} - SSR_{r})\frac{1}{k}}{SSE_{f}\frac{1}{n-p}} = \frac{\frac{SSR_{f} - SSR_{r}}{SST}\frac{1}{k}}{\frac{SSE_{f}}{SST}\frac{1}{n-p}} = \frac{\left(\frac{SSR_{f}}{SST} - \frac{SSR_{r}}{SST}\right)\frac{1}{k}}{\frac{SST - SSR_{f}}{SST}\frac{1}{n-p}} \\ &= \frac{\left(\frac{SSR_{f}}{SST} - \frac{SSR_{r}}{SST}\right)\frac{1}{k}}{\left(1 - \frac{SSR_{f}}{SST}\right)\frac{1}{n-p}} = \frac{\left(R_{f}^{2} - R_{r}^{2}\right)\frac{1}{k}}{\left(1 - R_{f}^{2}\right)\frac{1}{n-p}} \end{split}$$

Multiple Regression and ANOVA (Ch. 9.2)

Will Landau

Multiple Regression and ANOVA