Inference for Multiple Regression

Will Landau

Iowa State University

Apr 18, 2013

Inference for Multiple Regression

Will Landau

Multiple Regression: a Review

Estimating σ^2

Standardized Residuals

Inference for $\beta_0, \beta_1, \ldots, \beta_{p-1}$

Inference for Mean Responses Individual mean responses

Outline

Multiple Regression: a Review

Estimating σ^2

Standardized Residuals

Inference for $\beta_0, \beta_1, \ldots, \beta_{p-1}$

Inference for Mean Responses Individual mean responses Multiple mean responses Inference for Multiple Regression

Will Landau

Multiple Regression: a Review

Estimating σ^2

Standardized Residuals

Inference for $\beta_0, \beta_1, \ldots, \beta_{p-1}$

Inference for Mean Responses Individual mean

Multiple Regression

Multiple Regression: regression on multiple variables:

$$y_i \approx b_0 + b_1 x_{i,1} + b_2 x_{i,2} + b_3 x_{i,3} + \dots + b_{p-1} x_{i,p-1}$$

The p coefficients b₀, b₁,..., b_{p-1} are estimated by minimizing the loss function below using the least squares principle:

$$S(b_0, b_1, \dots, b_{p-1}) = \sum_{i=1}^n (y_i - b_0 + b_1 x_{i,1} + \dots + b_{p-1} x_{i,p-1})^2$$

 In practice, we make a computer find the coefficients for us. This class uses JMP 10, a statistical software tool. Inference for Multiple Regression

Will Landau

Multiple Regression: a Review

Estimating σ^2

Standardized Residuals

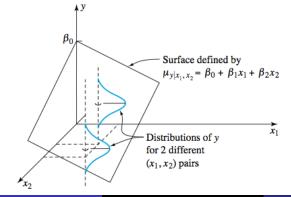
Inference for $\beta_0, \beta_1, \ldots, \beta_{p-1}$

Formalizing the multiple regression model

Now, we'll work with a formal multiple regression model:

$$Y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \dots + \beta_{p-1} x_{p-1,i} + \varepsilon_i$$

• Assume
$$\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n \sim \text{iid } N(0, \sigma^2)$$
.



Inference for Multiple Regression

Will Landau

Multiple Regression: a Review

Estimating σ^2

Standardized Residuals

Inference for $\beta_0, \beta_1, \ldots, \beta_{p-1}$

Outline

Multiple Regression: a Review

Estimating σ^2

Standardized Residuals

Inference for $\beta_0, \beta_1, \ldots, \beta_{p-1}$

Inference for Mean Responses Individual mean responses Multiple mean responses Inference for Multiple Regression

Will Landau

Multiple Regression: a Review

Estimating σ^2

Standardized Residuals

Inference for $\beta_0, \beta_1, \ldots, \beta_{p-1}$

Inference for Mean Responses Individual mean

Estimating σ^2

Now, the residuals are of the form:

$$e_i = y_i - \widehat{y}_i$$

= $y_i - (b_0 + b_1 x_{1,i} + \dots + b_{p-1} x_{p-1,i})$

We estimate the variance with the surface-fitting sample variance, also called mean squared error (MSE):

$$s_{SF}^2 = \frac{1}{n-p} \sum e_i^2$$

• The estimated standard deviation is $s_{SF} = \sqrt{s_{SF}^2}$.

► Note: the line fitting sample variance s²_{LF} is the special case of s²_{SF} for p = 2.

Apr 18, 2013

Inference for Multiple Regression

Will Landau

Multiple Regression: a Review

Estimating σ^2

Standardized Residuals

Inference for $\beta_0, \beta_1, \ldots, \beta_{p-1}$

- 1. Consider a chemical plant that makes nitric acid from ammonia.
- 2. We want to predict stack loss (y, 10 times the % ammonia that escapes from the absorption column) using:
 - ► x₁: air flow, the rate of operation of the plant
 - x₂, inlet temperature of the cooling water
 - ▶ x₃: (% circulating acid 50%)×10

Inference for Multiple Regression

Will Landau

Multiple Regression: a Review

Estimating σ^2

Standardized Residuals

Inference for $\beta_0, \beta_1, \ldots, \beta_{p-1}$

Inference for Mean Responses Individual mean

<i>i</i> , Observation	x_{1i} ,	x_{2i} , Cooling Water	x_{3i} , Acid	<i>y</i> _i ,
Number	Air Flow	Inlet Temperature	Concentration	Stack Loss
1	80	27	88	37
2	62	22	87	18
3	62	23	87	18
4	62	24	93	19
5	62	24	93	20
6	58	23	87	15
7	58	18	80	14
8	58	18	89	14
9	58	17	88	13
10	58	18	82	11
11	58	19	93	12
12	50	18	89	8
13	50	18	86	7
14	50	19	72	8
15	50	19	79	8
16	50	20	80	9
17	56	20	82	15

Inference for Multiple Regression

Will Landau

Multiple Regression: a Review

Estimating σ^2

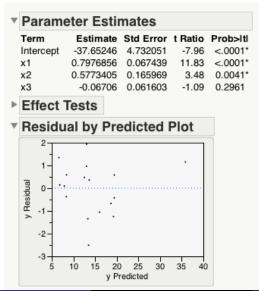
Standardized Residuals

Inference for $\beta_0, \beta_1, \ldots, \beta_{p-1}$

Inference for Mean Responses Individual mean responses Multiple mean responses

© Will Landau

Fitted surface: $\hat{y}_i = -37.65 + 0.797x_{1,i} + 0.577x_{2,i} - 0.067x_{3,i}$



Inference for Multiple Regression

Will Landau

Multiple Regression: a Review

Estimating σ^2

Standardized Residuals

Inference for $\beta_0, \beta_1, \ldots, \beta_{p-1}$

Inference for Mean Responses

Individual mean responses Multiple mean responses

Summa	ary of	f Fit		
RSquare			0.975006	
RSquare A	dj	_	0.969238	
Root Mean	Squar	e Error	1.252714	
Mean of Re	espons	e	14.47059	
Observatio	ns (or	Sum Wgts)	17	
Analysi	is of	Variance	•	
		Sum of		
Source	DF	Squares	Mean Square	F Ratio
Model	3	795.83449	2 <mark>65.278</mark>	169.0432
Error	13	20.40080	1.569	Prob > F
C. Total	16	816.23529		<.0001*

- ▶ $s_{SF}^2 = 1.569$ ("Mean Square Error", blue)
- *s_{SF}* = √1.569 = 1.25, also under "Root Mean Square Error" (red).

Inference for Multiple Regression

Will Landau

Multiple Regression: a Review

Estimating σ^2

Standardized Residuals

Inference for $\beta_0, \beta_1, \ldots, \beta_{p-1}$

Outline

Multiple Regression: a Review

Estimating σ^2

Standardized Residuals

Inference for $\beta_0, \beta_1, \ldots, \beta_{p-1}$

Inference for Mean Responses Individual mean responses Multiple mean responses Inference for Multiple Regression

Will Landau

Multiple Regression: a Review

Estimating σ^2

Standardized Residuals

Inference for $\beta_0, \beta_1, \ldots, \beta_{p-1}$

Inference for Mean Responses Individual mean

responses Multiple mean responses

Standardized residuals

As with simple linear regression, Var(e_i) is not constant even though Var(ε_i) = σ².

• There are some constants a_1, a_2, \ldots, a_n such that:

$$Var(e_i) = a_i \sigma^2$$

Hence, we compute the standardized residuals as:

$$e_i^* = \frac{e_i}{s_{SF}\sqrt{a_i}}$$

In practice, a₁,..., a_n are hard to compute. We'll make JMP do all the hard work. Inference for Multiple Regression

Will Landau

Multiple Regression: a Review

Estimating σ^2

Standardized Residuals

Inference for $\beta_0, \beta_1, \ldots, \beta_{p-1}$

00		stackloss.jmp: Fit Least Square	win Landau
		N ? & A @ 1 P	Multiple Regression: a
▼ Regression Reports ► Estimates ► Effect Screening ► Factor Profiling ► Row Diagnostics ► Save Columns ► Model Dialog Script Error 13 20.40080	17 Prediction Formula Predicted Values Residuals Mean Confidence Interval		Review Estimating σ^2 Standardized Residuals Inference for $\beta_0, \beta_1, \dots, \beta_{p-2}$ Inference for Mea
C. Total 16 816.23529	Indiv Confidence Interval Studentized Residuals Hats	Saves the studentized residual, which is the residual divided by its standard error.	Responses Individual mean
Lack Of Fit Source DF Square Lack Of Fit 12 19.90080 Pure Error 1 0.50000	Std Error of Predicted Std Error of Residual Std Error of Individual Effect Leverage Pairs Cook's D Influence		responses Multiple mean responses
Total Error 13 20.40080	StdErr Pred Formula Mean Confidence Limit Formula Indiv Confidence Limit Formula Save Coding Table		

Inference for

Multiple Regression Will Landau

0 0			🛐 stad	🔄 stackloss.jmp			
▼ stackloss.jmp 🛛 🕨		x1	x2	x3	у	Studentized Resid y	
	1	80	27	88	37	1.6699301413	
	2	62	22	87	18	-0.559158154	
	3	62	23	87	18	-1.057298349	
	4	62	24	93	19	-0.391146767	
	5	62	24	93	20	0.5321959564	
	6	58	23	87	15	-0.928385357	
	7	58	18	80	14	0.3282961878	
	8	58	18	89	14	0.8586448878	
	9	58	17	88	13	0.4481300771	
	10	58	18	82	11	-2.228855416	
	11	58	19	93	12	-1.227567579	
	12	50	18	89	8	1.2152152611	
	13	50	18	86	7	0.1241939003	
Columns (5/0)	14	50	19	72	8	-0.394983744	
1 x1	15	50	19	79	8	0.0849968417	
x2 x3	16	50	20	80	9	0.5271747049	
v	17	56	20	82	15	1.6133138635	
Studentized Resid							

Inference for Multiple Regression

Will Landau

Multiple Regression: a Review

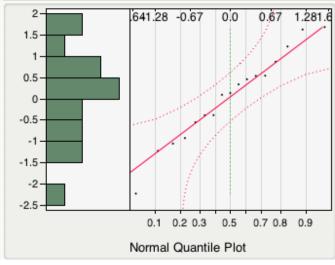
Estimating σ^2

Standardized Residuals

Inference for $\beta_0, \beta_1, \ldots, \beta_{p-1}$

(c) Will Landau

Studentized Resid y



Iowa State University

Inference for Multiple Regression

Will Landau

Multiple Regression: a Review

Estimating σ^2

Standardized Residuals

Inference for $\beta_0, \beta_1, \ldots, \beta_{p-1}$

Outline

Multiple Regression: a Review

Estimating σ^2

Standardized Residuals

Inference for $\beta_0, \beta_1, \ldots, \beta_{p-1}$

Inference for Mean Responses Individual mean responses Multiple mean responses Inference for Multiple Regression

Will Landau

Multiple Regression: a Review

Estimating σ^2

Standardized Residuals

Inference for $\beta_0, \beta_1, \ldots, \beta_{p-1}$

Inference for $\beta_0, \beta_1, \ldots, \beta_{p-1}$

Our formal model is:

$$Y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \dots + \beta_{p-1} x_{p-1,i} + \varepsilon_i$$

Our estimated model is:

$$\hat{y}_i = b_0 + b_1 x_{1,i} + b_2 x_{2,i} + \dots + b_{p-1} x_{p-1,i}$$

How close are the estimates to their true values?

Inference for Multiple Regression

Will Landau

Multiple Regression: a Review

Estimating σ^2

Standardized Residuals

Inference for $\beta_0, \beta_1, \ldots, \beta_{p-1}$

Inference for $\beta_0, \beta_1, \ldots, \beta_p$

Under our model assumptions:

$$b_l \sim N(\beta_l, d_l \sigma^2)$$

for some positive constant d_l , l = 0, 1, 2, ..., p - 1. That means:

$$\frac{b_l - \beta_l}{s_{SF}\sqrt{d_l}} = \frac{b_l - \beta_l}{\widehat{SD}(b_l)} \sim t_{n-p}$$

• A test statistic for testing $H_0: b_l = \#$ is:

$$K = rac{b_l - \#}{s_{SF}\sqrt{d_l}} = rac{b_l - \#}{\widehat{SD}(b_l)} \sim t_{n-p}$$

• A 2-sided $1 - \alpha$ confidence interval for β_I is:

$$b_l \pm t_{n-p, \ 1-lpha/2} \cdot s_{SF} \sqrt{d_l}$$

i.e.,

$$b_l \pm t_{n-p, \ 1-\alpha/2} \cdot \widehat{SD}(d_l)$$

© Will Landau

Iowa State University

Will Landau

Multiple Regression: a Review

Estimating σ^2

Standardized Residuals

Inference for $\beta_0, \beta_1, \ldots, \beta_{p-1}$

Inference for Mean Responses Individual mean responses Multiple mean responses

Apr 18, 2013 18 / 37

Your turn

- ▶ *n* = 17
- x₁: air flow, the rate of operation of the plant
- x₂, inlet temperature of the cooling water
- x₃: (% circulating acid 50%)×10

Parameter Estimates								
Term	Estimate	Std Error	t Ratio	Prob>ltl				
Intercept	-37.65246	4.732051	-7.96	<.0001*				
x1	0.7976856	0.067439	11.83	<.0001*				
x2	0.5773405	0.165969	3.48	0.0041*				
x3	-0.06706	0.061603	-1.09	0.2961				

- 1. Test H_0 : $\beta_1 = 1$ vs. H_a : $\beta_1 < 1$ using $\alpha = 0.1$.
- 2. Test $H_0: \beta_3 = 0$ vs. $H_a: \beta_3 \neq 0$ by hand ($\alpha = 0.05$), and compare your t statistic to the one in the output table.
- 3. Construct and interpret a 2-sided 99% confidence interval for β_3 .
- 4. Construct and interpret a 1-sided lower 90% confidence interval for β_2

Inference for Multiple Regression

Will Landau

Multiple Regression: a Review

Estimating σ^2

Standardized Residuals

Inference for $\beta_0, \beta_1, \ldots, \beta_{p-1}$

1.
$$H_0: \beta_1 = 1, H_a: \beta_1 < 1$$

- **2**. $\alpha = 0.1$
- 3. I use the test statistic:

$$K = \frac{b_1 - 1}{\widehat{SD}(b_1)}$$

I assume:

- ► H₀ is true.
- The model $Y_i = \beta_0 + \beta_1 x_{1,i} + \beta_1 x_{2,i} + \beta_1 x_{3,i} + \varepsilon_i$, with $\varepsilon_1, \ldots, \varepsilon_{17} \sim N(0, \sigma^2)$ is correct.
- Under the assumptions, $K \sim t_{n-p} = t_{17-4} = t_{13}$.
- I will reject H_0 if $K < -t_{13,1-\alpha} = t_{13,0.9} = 1.35$.

Inference for Multiple Regression

Will Landau

Multiple Regression: a Review

Estimating σ^2

Standardized Residuals

Inference for $\beta_0, \beta_1, \ldots, \beta_{p-1}$

4. The moment of truth:

$$K = \frac{0.7977 - 1}{0.06744} = -3.00$$

- 5. With $K = -3 < -1.35 = -t_{13,0.9}$, we reject H_0 and conclude H_a .
- 6. There is enough evidence to conclude that the true slope on airflow is less than 1 unit stack loss / unit airflow. With each unit increase in airflow and all the other covariates held constant, we expect stack loss to increase by less than one unit.

Inference for Multiple Regression

Will Landau

Multiple Regression: a Review

Estimating σ^2

Standardized Residuals

```
Inference for \beta_0, \beta_1, \ldots, \beta_{p-1}
```

1.
$$H_0: \beta_3 = 0, \ H_a: \beta_3 \neq 0$$

2.
$$\alpha = 0.05$$

3. I use the test statistic:

$$K=\frac{b_3-0}{\widehat{SD}(b_3)}$$

I assume:

- ► H₀ is true.
- The model $Y_i = \beta_0 + \beta_1 x_{1,i} + \beta_1 x_{2,i} + \beta_1 x_{3,i} + \varepsilon_i$, with $\varepsilon_1, \ldots, \varepsilon_{17} \sim N(0, \sigma^2)$ is correct.
- Under the assumptions, $K \sim t_{n-p} = t_{17-4} = t_{13}$.
- I will reject H_0 if $|K| > |t_{13,1-\alpha/2}| = t_{13,0.975} = 2.16$.

Inference for Multiple Regression

Will Landau

Multiple Regression: a Review

Estimating σ^2

Standardized Residuals

Inference for $\beta_0, \beta_1, \ldots, \beta_{p-1}$

4. The moment of truth:

$${\cal K}={-0.06706-0\over 0.0616}=-1.089~~{
m (agrees with the "t Ratio")}$$

- 5. With |K| = 1.089 < 2.16, we fail to reject H_0 .
- 6. There is not enough evidence to conclude that the true slope on circulating acid (shifted and scaled) is nonzero. With each unit increase acid and all the other covariates held constant, there is no evidence that the stack loss should change.

Inference for Multiple Regression

Will Landau

Multiple Regression: a Review

Estimating σ^2

Standardized Residuals

```
Inference for \beta_0, \beta_1, \ldots, \beta_{p-1}
```

```
Inference for Mean
Responses
Individual mean
responses
Multiple mean
responses
```

► For a confidence level of 99%, $\alpha = 0.01$ and so $t_{n-p,1-\alpha/2} = t_{13,0.995} = 3.012$.

$$(b_3 - t_{n-p,1-\alpha/2} \cdot \widehat{SD}(b_3), \ b_3 + t_{n-p,1-\alpha/2} \cdot \widehat{SD}(b_3)) = (-0.06706 - 3.012 \cdot 0.0616, \ -0.06706 + 3.012 \cdot 0.0616) = (-0.2525, \ 0.1185)$$

We're 99% confident that, for every unit increase in acid with all other covariates held constant, stack loss increases by anywhere from -0.2525 units to 0.1185 units. Inference for Multiple Regression

Will Landau

Multiple Regression: a Review

Estimating σ^2

Standardized Residuals

Inference for $\beta_0, \beta_1, \ldots, \beta_{p-1}$

► For a confidence level of 90%, $\alpha = 0.1$ and so $t_{n-p,1-\alpha/2} = t_{13,0.95} = 1.77$.

$$(b_2 - t_{n-p,1-\alpha/2} \cdot \widehat{SD}(b_2), \ b_2 + t_{n-p,1-\alpha/2} \cdot \widehat{SD}(b_2)) = (0.5573 - 1.77 \cdot 0.166, \ 0.5573 + 1.77 \cdot 0.166) = (0.26348, \ 0.8511)$$

We're 90% confident that, for every 1-degree increase in temperature with all other covariates held constant, stack loss increases by anywhere from 0.26348 units to 0.8511 units. Inference for Multiple Regression

Will Landau

Multiple Regression: a Review

Estimating σ^2

Standardized Residuals

Inference for $\beta_0, \beta_1, \ldots, \beta_{p-1}$

Outline

Multiple Regression: a Review

Estimating σ^2

Standardized Residuals

Inference for $\beta_0, \beta_1, \ldots, \beta_{p-1}$

Inference for Mean Responses

Individual mean responses Multiple mean responses Inference for Multiple Regression

Will Landau

Multiple Regression: a Review

Estimating σ^2

Standardized Residuals

Inference for $\beta_0, \beta_1, \ldots, \beta_{p-1}$

Inference for Mean Responses

Individual mean responses Multiple mean responses

Individual mean responses

- ▶ We want to estimate the mean response at the set of covariate values, (x₁, x₂,..., x_{p-1})
- Under the model assumptions, the estimated mean response, $\hat{\mu}_{y|x}$, at $\mathbf{x} = (x_1, x_2, \dots, x_{p-1})$ is normally distributed with:

$$E(\hat{\mu}_{y|\mathbf{x}}) = \mu_{y|\mathbf{x}} = \beta_0 + \beta_1 x_1 + \dots + \beta_{p-1} x_{p-1}$$
$$Var(\hat{\mu}_{y|\mathbf{x}}) = \sigma^2 A^2$$

for some constant A.

Under the model assumptions:

$$Z = \frac{\widehat{\mu}_{y|\mathbf{x}} - \mu_{y|\mathbf{x}}}{\sigma A} \sim N(0, 1) \quad T = \frac{\widehat{\mu}_{y|\mathbf{x}} - \mu_{y|\mathbf{x}}}{s_{SF}A} \sim t_{n-p}$$

• A test statistic for testing
$$H_0: \mu_{y|x} = \#$$
 is:

$$rac{\widehat{\mu}_{y|\mathbf{x}} - \#}{s_{SF}A}$$

which has a t_{n-p} distribution under H_0 .

• A 2-sided, $1 - \alpha$ confidence interval for $\mu_{y|\mathbf{x}}$ in compact form is $\widehat{\mu}_{y|\mathbf{x}} \pm t_{n-p,1-\alpha/2} \cdot s_{SF} \cdot A$.

Note: $s_{SF}A = \widehat{SD}(\widehat{\mu}_{y|x})$, which you can get directly from JMP output.

© Will Landau

Will Landau

Multiple Regression: a Review

Estimating σ^2

Standardized Residuals

Inference for $\beta_0, \beta_1, \ldots, \beta_{p-1}$

I will use JMP to compute a 2-sided 95% confidence interval around the mean response at point 3:
 x₁ = 62, x₂ = 23, x₃ = 87, y = 18.

Inference for Multiple Regression

Will Landau

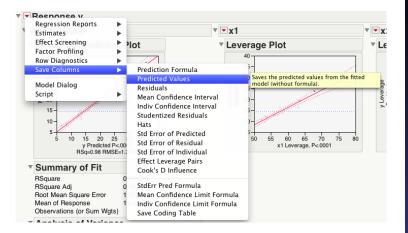
Multiple Regression: a Review

Estimating σ^2

Standardized Residuals

Inference for $\beta_0, \beta_1, \ldots, \beta_{p-1}$

Inference for Mean Responses Individual mean responses



Inference for Multiple Regression

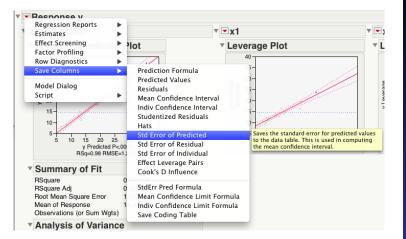
Will Landau

Multiple Regression: a Review

Estimating σ^2

Standardized Residuals

Inference for $\beta_0, \beta_1, \ldots, \beta_{p-1}$



Inference for Multiple Regression

Will Landau

Multiple Regression: a Review

Estimating σ^2

Standardized Residuals

Inference for $\beta_0, \beta_1, \ldots, \beta_{p-1}$

Inference for Mean Responses Individual mean responses

◀						
	x1	x2	x3	У	Predicted y	StdErr Pred y
1	80	27	88	37	35.849282687	1.0461642094
2	62	22	87	18	18.671300496	0.35771273
3	62	23	87	18	19.248640953	0.417845385
4	62	24	93	19	19.423620349	0.6295687471
5	62	24	93	20	19.423620349	0.6295687471
6	58	23	87	15	16.057898713	0.5204068064
7	58	18	80	14	13.640617664	0.6090546656
8	58	18	89	14	13.037076072	0.5582571612
9	58	17	88	13	12.526795792	0.6739851764
10	58	18	82	11	13.50649731	0.5519432283
11	58	19	93	12	13.346175822	0.6055705716
12	50	18	89	8	6.6555915917	0.5876767248
13	50	18	86	7	6.8567721223	0.4891659484
14	50	19	72	8	8.3729550563	0.8232400377
15	50	19	79	8	7.903533818	0.5302896274
16	50	20	80	9	8.4138140985	0.5769617708
17	56	20	82	15	13.065807105	0.3632418427

Inference for Multiple Regression

Will Landau

Multiple Regression: a Review

Estimating σ^2

Standardized Residuals

Inference for $\beta_0, \beta_1, \ldots, \beta_{p-1}$

• With $t_{n-p,1-\alpha/2} = t_{13,0.975} = 2.16$ the confidence interval is:

$$\begin{aligned} &(\widehat{\mu}_{y|\mathbf{x}} - 2.16 \cdot \widehat{SD}(\widehat{\mu}_{y|\mathbf{x}}), \ \widehat{\mu}_{y|\mathbf{x}} + 2.16 \cdot \widehat{SD}(\widehat{\mu}_{y|\mathbf{x}})) \\ &= (19.249 - 2.16 \cdot 0.419, \ 19.249 + 2.16 \cdot 0.419) \\ &= (10.199, \ 28.299) \end{aligned}$$

We're 95% confident that when the air flow is 62, the temperature is 23 degrees, and the adjusted percentage of circulating acid is 87, the true mean stack loss is anywhere between 10.199 and 28.299 units. Inference for Multiple Regression

Will Landau

Multiple Regression: a Review

Estimating σ^2

Standardized Residuals

Inference for $\beta_0, \beta_1, \ldots, \beta_{p-1}$

Multiple mean responses

• The multiple $1 - \alpha$ confidence interval formula for $\mu_{y|x_1,...,x_{p-1}}$ is:

$$\widehat{\mu}_{y|\mathbf{x}} \pm \sqrt{p \cdot F_{p, n-p, 1-lpha}} \cdot s_{SF} \cdot A$$

- Since there's no simple formula for A, we'll make JMP do all the work for us.
- First, we'll need to write SD(µ̂_{y|x}) = s_{SF} ⋅ A and write the interval as:

$$\widehat{\mu}_{y|\mathbf{x}} \pm \sqrt{p \cdot F_{p, n-p, 1-\alpha}} \cdot \widehat{SD}(\widehat{\mu}_{y|\mathbf{x}})$$

Inference for Multiple Regression

Will Landau

Multiple Regression: a Review

Estimating σ^2

Standardized Residuals

```
Inference for \beta_0, \beta_1, \ldots, \beta_{p-1}
```

- With *p* parameters and 95% confidence intervals,
 *F_{p, n-p, 1-α} = F*_{4,13,0.95} = 3.18.
- The multiple confidence interval becomes:

$$\widehat{\mu}_{y|\mathbf{x}} \pm \sqrt{4 \cdot 3.18} \cdot \widehat{SD}(\widehat{\mu}_{y|\mathbf{x}})$$

i.e.,

$$\widehat{\mu}_{y|\mathbf{x}} \pm 3.57 \cdot \widehat{SD}(\widehat{\mu}_{y|\mathbf{x}})$$

• $\widehat{\mu}_{y|x}$ and $\widehat{SD}(\widehat{\mu}_{y|x})$ vary from point to point.

Inference for Multiple Regression

Will Landau

Multiple Regression: a Review

Estimating σ^2

Standardized Residuals

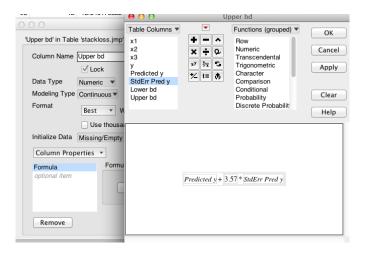
Inference for $\beta_0, \beta_1, \ldots, \beta_{p-1}$

Inference for Mean Responses Individual mean responses

00	Lo	ower bd	
		Row Numeric Transcendental Trigonometric Character Comparison Conditional Probability Discrete Probabilit	OK Cancel Apply Clear Help
	Predicted y - 3.	57]*StdErr Pred y	Heip

Inference for Multiple Regression Will Landau Multiple tegression: a Review stimating σ^2 standardized Residuals inference for $\beta_0, \beta_1, \dots, \beta_n$

Inference for Mean Responses Individual mean



Inference for Multiple Regression

Will Landau

Multiple Regression: a Review

Estimating σ^2

Standardized Residuals

Inference for $\beta_0, \beta_1, \ldots, \beta_{p-1}$

Inference for Mean Responses Individual mean responses Multiple mean

The columns, "Lower bd" and "Upper bd", give the endpoints for the confidence intervals.

x1	x2	x3	у	Predicted y	StdErr Pred y	Lower bd	Upper bd
80	27	88	37	35.849282687	1.0461642094	32.114476459	39.584088915
62	22	87	18	18.671300496	0.35771273	17.39426605	19.948334942
62	23	87	18	19.248640953	0.417845385	17.756932929	20.740348978
62	24	93	19	19.423620349	0.6295687471	17.176059922	21.671180776
62	24	93	20	19.423620349	0.6295687471	17.176059922	21.671180776
58	23	87	15	16.057898713	0.5204068064	14.200046414	17.915751012
58	18	80	14	13.640617664	0.6090546656	11.466292508	15.814942821
58	18	89	14	13.037076072	0.5582571612	11.044098007	15.030054138
58	17	88	13	12.526795792	0.6739851764	10.120668712	14.932922872
58	18	82	11	13.50649731	0.5519432283	11.536059986	15.476934635
58	19	93	12	13.346175822	0.6055705716	11.184288881	15.508062763
50	18	89	8	6.6555915917	0.5876767248	4.557585684	8.7535974993
50	18	86	7	6.8567721223	0.4891659484	5.1104496867	8.603094558
50	19	72	8	8.3729550563	0.8232400377	5.4339881219	11.311921991
50	19	79	8	7.903533818	0.5302896274	6.0103998483	9.7966677878
50	20	80	9	8.4138140985	0.5769617708	6.3540605768	10.47356762
56	20	82	15	13.065807105	0.3632418427	11.769033727	14.362580484

Inference for Multiple Regression

Will Landau

Multiple Regression: a Review

Estimating σ^2

Standardized Residuals

Inference for $\beta_0, \beta_1, \ldots, \beta_{p-1}$