More Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

Iowa State University

Apr 16, 2013

More Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

SLR: Inference for the Mean Response at some x

Outline

SLR: Inference for the Mean Response at some \boldsymbol{x}

Simultaneous Confidence Intervals for $\mu_{y|x}$

More Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

SLR: Inference for the Mean Response at some x

Simultaneous Confidence Intervals for µ_{y|x}

Recall our model:

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

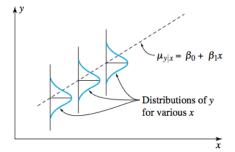
 $\varepsilon_1,\ldots,\varepsilon_n\sim$ iid $N(0,\sigma^2)$

Under the model, the true mean response at some observed covariate value x_i is:

$$\mu_{y|x_i} = \beta_0 + \beta_1 x_i$$

Now, if some new covariate value x is within the range of the x_i's, we can estimate the true mean response at this new x:

$$\widehat{\mu}_{y|x} = b_0 + b_1 x$$


© Will Landau

More Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

SLR: Inference for the Mean Response at some *x*

But how good is the estimate?

That's why we do inference.

More Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

SLR: Inference for the Mean Response at some x

• Under the model, $\hat{\mu}_{y|x}$ is normally distributed with:

$$E(\widehat{\mu}_{y|x}) = \mu_{y|x} = \beta_0 + \beta_1 x$$
$$Var(\widehat{\mu}_{y|x}) = \sigma^2 \left(\frac{1}{n} + \frac{(x - \overline{x})^2}{\sum_i (x_i - \overline{x})^2}\right)$$

We can construct a N(0, 1) random variable by standardizing:

$$Z = \frac{\widehat{\mu}_{y|x} - \mu_{y|x}}{\sigma \sqrt{\frac{1}{n} \frac{(x-\overline{x})^2}{\sum_i (x_i - \overline{x})^2}}} \sim N(0, 1)$$

• Replacing σ with $s_{LF} = \sqrt{\frac{1}{n-2}\sum_i (y_i - \hat{y}_i)^2}$:

$$T = \frac{\widehat{\mu}_{y|x} - \mu_{y|x}}{s_{LF}\sqrt{\frac{1}{n}\frac{(x-\overline{x})^2}{\sum_i (x_i - \overline{x})^2}}} \sim t_{n-2}$$

More Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

SLR: Inference for the Mean Response at some x

• To test $H_0: \mu_{y|x} = \#$, we can use the test statistic:

$$K = \frac{\widehat{\mu}_{y|x} - \#}{s_{LF}\sqrt{\frac{1}{n} + \frac{(x-\overline{x})^2}{\sum_i (x_i - \overline{x})^2}}}$$

which has a t_{n-2} distribution if H_0 is true and the model is correct.

► A 2-sided $1 - \alpha$ confidence interval for $\mu_{y|x}$ is:

$$\begin{split} \left(\widehat{\mu}_{y|x} - t_{n-2,\ 1-\alpha/2} \cdot s_{LF} \sqrt{\frac{1}{n} + \frac{(x-\overline{x})^2}{\sum_i (x_i - \overline{x})^2}}, \\ \widehat{\mu}_{y|x} + t_{n-2,\ 1-\alpha/2} \cdot s_{LF} \sqrt{\frac{1}{n} + \frac{(x-\overline{x})^2}{\sum_i (x_i - \overline{x})^2}}\right) \end{split}$$

and the one-sided intervals are analogous.

© Will Landau

More Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

SLR: Inference for the Mean Response at some *x*

Pressing pressures and specimen densities for a ceramic compound

A mixture of Al_2O_3 , polyvinyl alcohol, and water was prepared, dried overnight, crushed, and sieved to obtain 100 mesh size grains. These were pressed into cylinders at pressures from 2,000 psi to 10,000 psi, and cylinder densities were calculated.

x (pressure in psi)	y (density in g/cc)
2000.00	2.49
2000.00	2.48
2000.00	2.47
4000.00	2.56
4000.00	2.57
4000.00	2.58
6000.00	2.65
6000.00	2.66
6000.00	2.65
8000.00	2.72
8000.00	2.77
8000.00	2.81
10000.00	2.86
10000.00	2.88
10000.00	2.86

More Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

SLR: Inference for the Mean Response at some *x*

Simultaneous Confidence Intervals for $\mu_{y|x}$

>

Example: ceramics

 First, I'll make a 2-sided 95% confidence interval for the true mean density of the ceramics at 4000 psi.

$$\widehat{\mu}_{y|x} = 2.375 + 0.0000487(4000) = 2.5697g/cc$$

With $t_{n-2, 1-\alpha/2} = t_{13,0.975} = 2.160$, the margin of error in the confidence interval is:

$$t_{n-2, \ 1-\alpha/2} \cdot s_{LF} \sqrt{\frac{1}{n} + \frac{(x-\overline{x})^2}{\sum_i (x_i - \overline{x})^2}}$$

= 2.160(0.0199) $\sqrt{\frac{1}{15} + \frac{(4000 - 6000)^2}{1.2 \times 10^8}} = 0.0136 g/cc$

Hence, the 95% CI is:

(2.5697 - 0.0136, 2.5697 + 0.0136) = (2.5561, 2.5833)

 We're 95% confident that the true mean density of the ceramics at 4000 psi is between 2.5561 g/cc and 2.5833 g/cc.

© Will Landau

More Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

SLR: Inference for the Mean Response at some x

Your turn: ceramics

- Calculate and interpret a 2-sided 95% confidence interval for the true mean density at 5000 psi, given:
 - $\hat{\mu}_{y|x} = 2.375 + 0.0000487x$
 - The margin of error is $t_{n-2,1-\alpha/2}s_{LF}\sqrt{\frac{1}{n}+\frac{(x-\overline{x})^2}{\sum_i(x_i-\overline{x})^2}}$

$$\sum_{i} (x_i - \overline{x})^2 = 1.2 \times 10^8$$

- ▶ n = 15, $\overline{x} = 6000$.
- $s_{LF} = 0.0199$
- ▶ $t_{13,0.975} = 2.16$
- ► Test H₀ : β₀ = 0 vs. H_a : β₀ ≠ 0 at significance level α = 0.05 using the method of p-values.

More Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

SLR: Inference for the Mean Response at some x

Answers: ceramics

Make a 2-sided 95% confidence interval for the true mean density of the ceramics at 5000 psi:

$$\widehat{\mu}_{y|x} = 2.375 + 0.0000487(5000) = 2.6183g/cc$$

With $t_{n-2, 1-\alpha/2} = t_{13,0.975} = 2.160$, the margin of error in the confidence interval is:

$$t_{n-2, \ 1-\alpha/2} \cdot s_{LF} \sqrt{\frac{1}{n} + \frac{(x-\overline{x})^2}{\sum_i (x_i - \overline{x})^2}}$$

= 2.160(0.0199) $\sqrt{\frac{1}{15} + \frac{(5000 - 6000)^2}{1.2 \times 10^8}} = 0.0118 g/cc$

Hence, the 95% CI is:

(2.6183 - 0.0118, 2.6183 + 0.0118) = (2.6065, 2.6301)

 We're 95% confident that the true mean density of the ceramics at 5000 psi is between 2.6065 g/cc and 2.6301 g/cc.

© Will Landau

More Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

SLR: Inference for the Mean Response at some x

Answers: ceramics

Now for the hypothesis test:

- 1. $H_0: \beta_0 = 0, \ H_a: \beta_0 \neq 0$
- **2**. $\alpha = 0.05$

3. β_0 is just $\mu_{y|x=0}$. The test statistic is:

$$K = \frac{b_0 - 0}{s_{LF}\sqrt{\frac{1}{n} + \frac{(0 - \bar{x})^2}{\sum_i (x_i - \bar{x})^2}}} = \frac{b_0}{s_{LF}\sqrt{\frac{1}{n} + \frac{\bar{x}^2}{\sum_i (x_i - \bar{x})^2}}}$$

•
$$K \sim t_{n-2}$$
 assuming:

- ► H₀ is true.
- The model $Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$ is correct, with $\varepsilon_1, \ldots \varepsilon_n \sim \text{iid } N(0, 1).$

More Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

SLR: Inference for the Mean Response at some x

Answers: ceramics

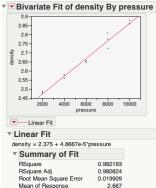
4. The moment of truth:

p

$$b_0 = 2.375$$

$$K = \frac{2.375}{0.0199\sqrt{\frac{1}{15} + \frac{6000^2}{1.2 \times 10^8}}} = 197.09$$
-value = $P(|t_{13}| > 197.09) \ll 0.0001$

5. With a p-value
$$\ll 0.0001 < \alpha$$
, we reject H_0 and conclude H_a .


6. There is overwhelming evidence that the intercept of the "true" line is different from 0.

More Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

SLR: Inference for the Mean Response at some *x*

Ceramics: back to the JMP output

Observations (or Sum Wots) 15

Lack Of Fit

Analysis of Variance

		Sum of		
Source	DF	Squares	Mean Square	F Ratio
Model	1	0.28421333	0.284213	717.0604
Error	13	0.00515267	0.000396	Prob > F
C. Total	14	0.28936600		<.0001*

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob>iti
Intercept	2.375	0.012055	197.01	<.0001*
pressure	4.8667e-5	1.817e-6	26.78	<.0001*

More Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

SLR: Inference for the Mean Response at some x

Ceramics: back to the JMP output

Parameter Estimates

 Term
 Estimate
 Std Error
 t Ratio
 Prob>ltl

 Intercept
 2.375
 0.012055
 197.01
 <.0001*</td>

 pressure
 4.8667e-5
 1.817e-6
 26.78
 <.0001*</td>

- ► The test statistic *K* is under "t Ratio" for the intercept.
- "Prob> |t|" for the intercept is the p-value for the significance test you just did.
- "Estimate" for the intercept is b_0 .
- "Std Error" for the intercept is:

$$\widehat{SD}(b_0) = s_{LF}\sqrt{\frac{1}{n} + \frac{\overline{x}^2}{\sum_i (x_i - \overline{x})^2}}$$

More Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

SLR: Inference for the Mean Response at some x

Be careful with Inference on β_0

- In this case and many others, β₀ = µ_{y|x=0} is beyond the range of our data.
- Estimating beyond the range of our covariate values is called extrapolation, which is dangerous for linear regression.
- Only extrapolate when:
 - You know your process or system well, and can describe it with the right differential equations.
 - You estimate the parameters of the resulting model using *nonlinear* regression:
 - Example: special case of the Michaelis-Menten model for enzyme kinetics with reaction speed y and substrate concentration x:

$$Y_i = \frac{\theta_1 x_i}{\theta_2 + x_i} + \varepsilon_i$$

 See Nonlinear Regression Analysis and Its Applications by Bates and Watts for more information on nonlinear regression. More Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

SLR: Inference for the Mean Response at some x

Outline

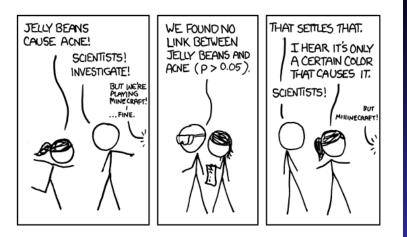
SLR: Inference for the Mean Response at some x

Simultaneous Confidence Intervals for $\mu_{y|x}$

More Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

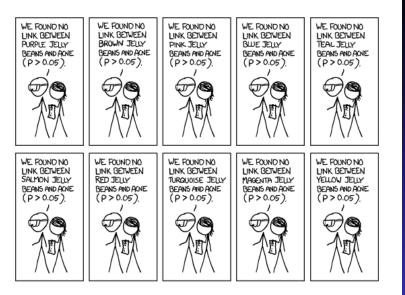
SLR: Inference for the Mean Response at some x


Simultaneous confidence intervals

- ► Situations will arise when you'll want to do inference on $\mu_{Y|x=2000}, \mu_{Y|x=4000}, \mu_{Y|x=6000}, \ldots$, all at once.
- When you compute several confidence intervals at once or do multiple tests at once, you need to account for the simultaneity.
- On average, for every 20 tests you do at α = 0.05, we expect 1 of those tests to conclude H_a by chance alone.
 - Remember: $\alpha = P(\text{reject } H_0 \text{ assuming } H_0 \text{ is true}).$

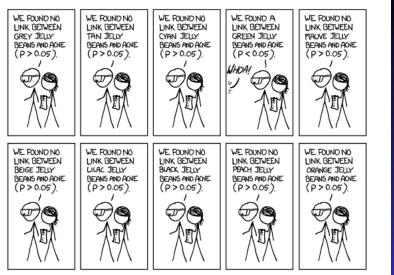
More Inference for Simple Linear Regression (Ch. 9.1)

Will Landau


SLR: Inference for the Mean Response at some x

More Inference for Simple Linear Regression (Ch. 9.1)

Will Landau


SLR: Inference for the Mean Response at some x

More Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

SLR: Inference for the Mean Response at some x

More Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

SLR: Inference for the Mean Response at some x

🖴 Νεωs 💳 GREEN JELLY BEANS LINKED ΤoA 95% CONFIDENCE

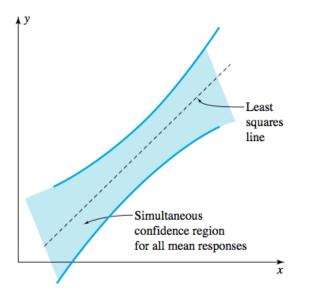
More Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

SLR: Inference for the Mean Response at some *x*

Simultaneous confidence intervals for $\mu_{y|x}$

For simultaneous confidence intervals for µ_{y|x} for multiple values of x, use:


$$b_0 + b_1 x \pm \sqrt{2F_{2,n-2,1-lpha}} \cdot s_{LF} \cdot \sqrt{rac{1}{n} + rac{(x-\overline{x})^2}{\sum_i (x_i-\overline{x})^2}}$$

This formula accounts for the fact that we're computing k confidence intervals at the same time. More Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

SLR: Inference for the Mean Response at some x

Simultaneous confidence intervals for $\mu_{y|x}$

More Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

SLR: Inference for the Mean Response at some *x*

Example: ceramics

► Given:

- ▶ *n* = 15
- ► <u>x</u> = 6000

$$\sum_{i} (x_i - \overline{x})^2 = 1.2 \times 10^8$$

- $\hat{y} = 2.375 + 4.87 \times 10^{-5} x$, $s_{LF} = 0.0199$.
- The simultaneous confidence interval formula is:

$$b_0 + b_1 x \pm \sqrt{2F_{2,k,1-\alpha/2}} \cdot s_{LF} \cdot \sqrt{\frac{1}{n}} + \frac{(x-\overline{x})^2}{\sum_i (x_i - \overline{x})^2}$$

► I will calculate simultaneous 95% confidence intervals for the mean responses µ_{y|x} at x = 2000, 4000, 6000, 8000, and 10000. More Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

SLR: Inference for the Mean Response at some x

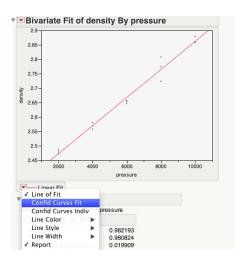
Example: ceramics

• Using $F_{2,n-2,1-\alpha} = F_{2,13,0.95} = 3.81$, the intervals are of the form:

$$2.375 + 4.87 \times 10^{-5} x \pm \sqrt{2 \cdot 3.81} \cdot 0.0199 \cdot \sqrt{\frac{1}{15} + \frac{(x - 6000)^2}{1.2 \times 10^8}}$$

= 2.375 + 4.87 × 10⁻⁵ x ± 0.0549 \sqrt{0.066 + 8.33 × 10^{-9} (x - 6000)^2}

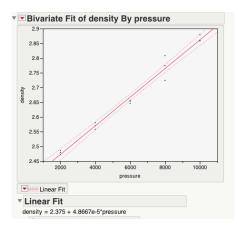
x, pressure	CI, compact form	CI
2000	2.4723 ± 0.0246	(2.4477, 2.4969)
4000	2.5697 ± 0.0174	(2.5523, 2.5871)
6000	2.6670 ± 0.0142	(2.6528, 2.6812)
8000	2.7643 ± 0.0174	(2.7469, 2.7817)
10000	2.8617 ± 0.0246	(2.8371, 2.8863)


More Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

SLR: Inference for the Mean Response at some x

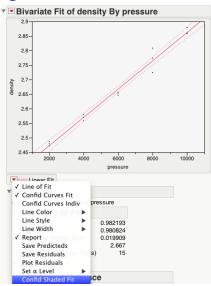
Simultaneous Confidence Intervals for $\mu_{y|x}$


_

More Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

SLR: Inference for the Mean Response at some *x*

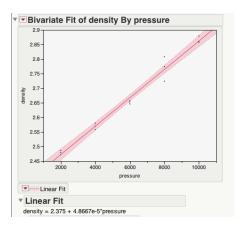


More Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

SLR: Inference for the Mean Response at some *x*

Iowa State University


(C)

Will Landau

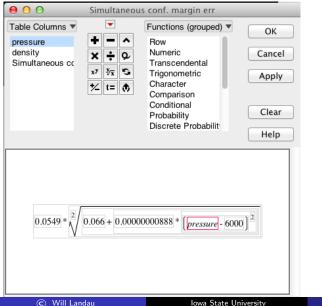
More Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

SLR: Inference for the Mean Response at some x

More Inference for Simple Linear Regression (Ch. 9.1)

Will Landau


SLR: Inference for the Mean Response at some *x*

0	Simultaneous conf. margin err		000		ceramics.	J.c.ip	
imultaneous conf. n	hargin err' in Table 'ceramics.jmp'	ОК	 ceramics.jmp Source 	• •	pressure	density	Simultaneous conf. margin
Column Name Simultaneous conf. margin err	Cancel		1	2000		•	
1	Lock			2			•
	meric 🔻	Apply	Columns (3/1)	3	4000		
Modeling Type Co		Help	▲ pressure	5	4000		
	ntinuous 🔻		density	6	4000	2.58	•
Format	est v Width 12		Simultaneous conf	,			•
	Use thousands separator (,)			8	6000		•
Initialize Data Missing/Empty Column Properties				9	6000 8000		
			Rows All rows 15	11	8000		
				12			
Formula		Selected 1 Excluded 0	13	10000		•	
optional item			Hidden 0	14	10000		•
	Edit Formula Ignore Errors		Labelled 0	15	10000	2.858	•
Remove							
Kennove							

More Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

SLR: Inference for the Mean Response at some x

More Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

SLR: Inference for the Mean Response at some *x*

\varTheta 🔿 🔗 📄 📴 ceramics.jmp						
▼ ceramics.jmp	◀▼			Simultaneous		
 Source 	•	pressure	density	conf. margin		
	1	2000	2.486	0.0245077929		
	2	2000	2.479	0.0245077929		
	3	2000	2.472	0.0245077929		
Columns (3/1)	4	4000	2.558	0.0173017766		
pressure	5	4000	2.57	0.0173017766		
density	6	4000	2.58	0.0173017766		
Simultaneous conf	7	6000	2.646	0.0141040654		
	8	6000	2.657	0.0141040654		
	9	6000	2.653	0.0141040654		
	10	8000	2.724	0.0173017766		
 Rows 	11	8000	2.774	0.0173017766		
All rows 15	12	8000	2.808	0.0173017766		
Selected 1 Excluded 0 Hidden 0 Labelled 0	13	10000	2.861	0.0245077929		
	14	10000	2.879	0.0245077929		
	15	10000	2.858	0.0245077929		
L						

More Inference for Simple Linear Regression (Ch. 9.1)

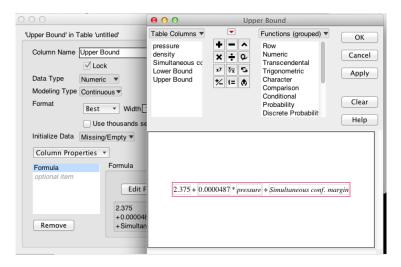
Will Landau

SLR: Inference for the Mean Response at some x

	000	Lower Bound	
000	L Table Columns 🔻	Functions (grouped) 🔻 ОК
'Lower Bound' in Table 'untitled' Column Name Lower Bound Schock	bressure density Simultaneous cc Lower Bound Upper Bound	★ ▲ Row Numeric Transcendental x³ ∛x S Trigonometric Character	Cancel
Data Type Numeric Modeling Type Continuous Format Best Wid	ith 12	Comparison Conditional Probability Discrete Probabilit	Clear Help
Use thousand Initialize Data Missing/Empty Column Properties			
	(2.375 + 0.00 5+0.00	000487 * pressure) - Simultaneous co	onf. margin

More Inference for Simple Linear Regression (Ch. 9.1)

Will Landau


SLR: Inference for the Mean Response at some *x*

$\odot \bigcirc \bigcirc$			untitled			
✓ untitled		pressure	density	Simultaneous conf. margin	Lower Bound	Upper Bound
	1	2000	2.486	0.0245077929	2.4478922071	
	2	2000	2.479	0.0245077929	2.4478922071	
	3	2000	2.472	0.0245077929	2.4478922071	
	4	4000	2.558	0.0173017766	2.5524982234	
	5	4000	2.57	0.0173017766	2.5524982234	
	6	4000	2.58	0.0173017766	2.5524982234	
	7	6000	2.646	0.0141040654	2.6530959346	
	8	6000	2.657	0.0141040654	2.6530959346	
	9	6000	2.653	0.0141040654	2.6530959346	
	10	8000	2.724	0.0173017766	2.7472982234	
Columns (5/0)	11	8000	2.774	0.0173017766	2.7472982234	
pressure	12	8000	2.808	0.0173017766	2.7472982234	
density Simultaneous conf	13	10000	2.861	0.0245077929	2.8374922071	
Lower Bound +	14	10000	2.879	0.0245077929	2.8374922071	
Upper Bound	15	10000	2.858	0.0245077929	2.8374922071	

More Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

SLR: Inference for the Mean Response at some x

More Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

SLR: Inference for the Mean Response at some x

► - untitled -Simultaneous • densitv conf. margin Lower Bound Upper Bound pressure 1 2000 2.486 0.0245077929 2.4478922071 2,4969077929 2 2000 2.479 0.0245077929 2.4478922071 2.4969077929 3 2000 2.472 0.0245077929 2.4478922071 2,4969077929 4 4000 0.0173017766 2.5524982234 2.5871017766 2.558 5 4000 2.57 0.0173017766 2.5524982234 2.5871017766 6 4000 0.0173017766 2.5524982234 2.5871017766 2.58 7 6000 2.646 0.0141040654 2 6530959346 2 6813040654 8 6000 2.657 0.0141040654 2.6530959346 2.6813040654 9 6000 2.6530959346 2.653 0.0141040654 2 6813040654 10 8000 2.724 0.0173017766 2.7472982234 2,7819017766 Columns (5/1) 11 8000 0.0173017766 2.7472982234 2.774 2.7819017766 pressure 12 8000 2.808 0.0173017766 2.7472982234 2,7819017766 density 13 10000 2.861 0.0245077929 2.8374922071 2.8865077929 Simultaneous conf 14 10000 2.879 0.0245077929 2.8374922071 2.8865077929 Lower Bound + 15 10000 0.0245077929 2.8374922071 2.8865077929 2.858 Upper Bound +

More Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

SLR: Inference for the Mean Response at some x