Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

Iowa State University

Apr 11, 2013

Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

A Review of Simple Linear Regression (Ch. 4)

Formalizing the Simple Linear Regression Model

Estimating σ^2

Standardized residuals

Outline

A Review of Simple Linear Regression (Ch. 4)

Formalizing the Simple Linear Regression Model

Estimating σ^2

Standardized residuals

Inference for the slope parameter

Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

A Review of Simple Linear Regression (Ch. 4)

Formalizing the Simple Linear Regression Model

Estimating σ^2

Standardized residuals

Pressing pressures and specimen densities for a ceramic compound

A mixture of Al_2O_3 , polyvinyl alcohol, and water was prepared, dried overnight, crushed, and sieved to obtain 100 mesh size grains. These were pressed into cylinders at pressures from 2,000 psi to 10,000 psi, and cylinder densities were calculated.

x (pressure in psi)	y (density in g/cc)
2000.00	2.49
2000.00	2.48
2000.00	2.47
4000.00	2.56
4000.00	2.57
4000.00	2.58
6000.00	2.65
6000.00	2.66
6000.00	2.65
8000.00	2.72
8000.00	2.77
8000.00	2.81
10000.00	2.86
10000.00	2.88
10000.00	2.86

Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

A Review of Simple Linear Regression (Ch. 4)

Formalizing the Simple Linear Regression Model

Estimating σ^2

Standardized residuals

Scatterplot: ceramics data

Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

A Review of Simple Linear Regression (Ch. 4)

Formalizing the Simple Linear Regression Model

Estimating σ^2

Standardized residuals

► The line, y ≈ 2.375 + 4.867 × 10⁻⁵x, is the regression line fit to the data.

Apr 11, 2013 5 / 42

Inference for

Why fit a regression line?

- 1. To predict future values of y based on x.
 - ▶ I.e., a new ceramic under pressure x = 5000 psi should have a density of $2.375 + 4.867 \times 10^{-5} \cdot 5000 = 2.618$ g/cc.
- 2. To characterize the relationship between x and y in terms of strength, direction, and shape.
 - In the ceramics data, density has a strong, positive, linear association with x.
 - ➤ On average, the density increases by 4.867 × 10⁻⁵ g/cc for every increase in pressure of 1 psi.

Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

A Review of Simple Linear Regression (Ch. 4)

Formalizing the Simple Linear Regression Model

Estimating σ^2

Standardized residuals

Fitting a linear regression line

For a response variable y and a predictor variable x, we declare:

$$y \approx b_0 + b_1 x$$

- and then calculate the intercept b₀ and slope b₁ using least squares.
 - ▶ We apply the principle of least squares: that is, the best-fit line is given by minimizing the loss function in terms of b₀ and b₁:

$$S(b_0,b_1)=\sum_{i=1}^n(y_i-\widehat{y}_i)^2$$

• Here, $\widehat{y}_i = b_0 + b_1 x_i$

Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

A Review of Simple Linear Regression (Ch. 4)

Formalizing the Simple Linear Regression Model

Estimating σ^2

Standardized residuals

Minimize $\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$ to get the line as close as possible to the points.

Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

A Review of Simple Linear Regression (Ch. 4)

Formalizing the Simple Linear Regression Model

Estimating σ^2

Standardized residuals

How to apply least squares to get the regression line

From the principle of least squares, one can derive the normal equations:

$$nb_0 + b_1 \sum_{i=1}^n x_i = \sum_{i=1}^n y_i$$
$$b_0 \sum_{i=1}^n x_i + b_1 \sum_{i=1}^n x_i^2 = \sum_{i=1}^n x_i y_i$$

• and then solve for b_0 and b_1 :

$$b_1 = rac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2}$$
 $b_0 = \overline{y} - b_1 \overline{x}$

Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

A Review of Simple Linear Regression (Ch. 4)

Formalizing the Simple Linear Regression Model

Estimating σ^2

Standardized residuals

Example: plastics hardness data

Eight batches of plastic are made. From each batch one test item is molded. At a given time (in hours), it hardness is measured in units (assume freshly-melted plastic has a hardness of 0 units). The following are the 8 measurements and times.

time	hardness			
32.00	230.00		0	0
72.00	323.00	ts)	350	0
64.00	298.00	Hardness (units)	30	° 0
48.00	255.00	Jess		
16.00	199.00	lardı	250 	° °
40.00	248.00	T	200	0
80.00	359.00			20 30 40 50 60 70 80
56.00	305.00			
				Time (hours)

Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

A Review of Simple Linear Regression (Ch. 4)

Formalizing the Simple Linear Regression Model

Estimating σ^2

Standardized residuals

Fitting the line

- ▼ x = 51
- $ightharpoonup \overline{y} = 277.125$

х	У	$x_i - \overline{x}$	$y_i - \overline{y}$	$(x_i - \overline{x})(y_i - \overline{y})$	$(x_i - \overline{x})^2$
32.00	230.00	-19.00	-47.12	895.38	361.00
72.00	323.00	21.00	45.88	963.38	441.00
64.00	298.00	13.00	20.88	271.38	169.00
48.00	255.00	-3.00	-22.12	66.38	9.00
16.00	199.00	-35.00	-78.12	2734.38	1225.00
40.00	248.00	-11.00	-29.12	320.38	121.00
80.00	359.00	29.00	81.88	2374.38	841.00
56.00	305.00	5.00	27.88	139.38	25.00

Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

A Review of Simple Linear Regression (Ch. 4)

Formalizing the Simple Linear Regression Model

Estimating σ^2

Standardized residuals

Plot the line to check the fit.

Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

A Review of Simple Linear Regression (Ch. 4)

Formalizing the Simple Linear Regression Model

Estimating σ^2

Standardized residuals

Interpret the model terms

- ▶ b₁ = 2.43 means that on average, the plastic hardens 2.43 more units for every additional hour it is allowed to harden.
- ▶ b₀ = 153.19 means that if the model is completely true, at the very beginning of the hardening process (time = 0 hours), the plastics had a hardness of 153.19 on average.
 - But we know that the plastics were completely molten at the very beginning, with a hardness of 0.
 - Don't extrapolate: i.e., predict y values beyond the range of the x data.

Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

A Review of Simple Linear Regression (Ch. 4)

Formalizing the Simple Linear Regression Model

Estimating σ^2

Standardized residuals

Linear correlation: a measure of usefulness

Linear correlation: a measure of usefulness of a fitted line, defined by:

$$r = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2 \sum (y_i - \overline{y})^2}}$$

$$r = b_1 \frac{s_x}{s_y}$$

where s_x is the standard deviation of the x_i 's and x_y is the standard deviation of the y_i 's.

Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

A Review of Simple Linear Regression (Ch. 4)

Formalizing the Simple Linear Regression Model

Estimating σ^2

Standardized residuals

Facts about linear correlation

• $-1 \le r \le 1$

- r < 0 means a negative slope, r > 0 means a positive slope
- ► High |r| means x and y have a strong linear relationship (high correlation), and low |r| implies a weak linear relationship (low correlation).

Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

A Review of Simple Linear Regression (Ch. 4)

Formalizing the Simple Linear Regression Model

Estimating σ^2

Standardized residuals

Coefficient of determination

 Coefficient of determination: another measure of the usefulness of a fitted line, defined by:

$$R^{2} = \frac{\sum(y_{i} - \overline{y})^{2} - \sum(y_{i} - \widehat{y}_{i})^{2}}{\sum(y_{i} - \overline{y})^{2}}$$

where $\hat{y}_i = b_0 + b_1 x_i$.

Fortunately,

$$R^{2} = r^{2}$$

- Interpretation: R² is the fraction of variation in the response variable (y) explained by the fitted line.
- Ceramics data: R² = r² = 0.9911² = 0.9823, so 98.2279% of the variation in density is explained by pressure. Hence, the line is useful for predicting density from pressure.
- ► Plastics data: R² = r² = 0.9796² = 0.9596, so 95.9616% of the variation in hardness is explained by time. Hence, so the line is useful for predicting hardness from time.

© Will Landau

Will Landau

A Review of Simple Linear Regression (Ch. 4)

Formalizing the Simple Linear Regression Model

Estimating σ^2

Standardized residuals

Outline

A Review of Simple Linear Regression (Ch. 4)

Formalizing the Simple Linear Regression Model

Estimating σ^2

Standardized residuals

Inference for the slope parameter

Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

A Review of Simple Linear Regression (Ch. 4)

Formalizing the Simple Linear Regression Model

Estimating σ^2

Standardized residuals

The informal simple linear regression model

Up until now, we have looked at fitted lines of the form:

 $y_i = b_0 + b_1 x_i + e_i$

where:

- ▶ y₁, y₂,..., y_n are the fixed, observed values of the response variable.
- ► x₁, x₂,..., x_n are the fixed, observed values of the predictor variable.
- b₀ is the estimated slope of the line based on sample data.
- b₁ is the estimated intercept of the line based on sample data.
- *e_i* is the residual of the *i*'th unit of the sample.

Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

A Review of Simple Linear Regression (Ch. 4)

Formalizing the Simple Linear Regression Model

Estimating σ^2

Standardized residuals

The formal simple linear regression model

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

- ▶ Y₁, Y₂,..., Y_n are random variables that describe the response.
- ► x₁, x₂,..., x_n are still fixed, observed values of the predictor variable.
- β₀ is a parameter denoting the *true* intercept of the line if we fit it to the population.
- β₁ is a parameter denoting the *true* slope of the line if we fit it to the population.
- $\varepsilon_1, \ \varepsilon_2, \ldots, \varepsilon_n$ are random variables called **error terms**.

Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

A Review of Simple Linear Regression (Ch. 4)

Formalizing the Simple Linear Regression Model

Estimating σ^2

Standardized residuals

The formal simple linear regression model

We assume:

$$\varepsilon_1, \ \varepsilon_2, \ldots, \varepsilon_n \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$$

• Which means that for all *i*:

$$Y_i \stackrel{\text{iid}}{\sim} N(\beta_0 + \beta_1 x_i, \sigma^2)$$

We often say:

$$\mu_{y|x} = \beta_0 + \beta_1 x$$

Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

A Review of Simple Linear Regression (Ch. 4)

Formalizing the Simple Linear Regression Model

Estimating σ^2

Standardized residuals

The formal simple linear regression model

Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

A Review of Simple Linear Regression (Ch. 4)

Formalizing the Simple Linear Regression Model

Estimating σ^2

Standardized residuals

Inference for the slope parameter

Apr 11, 2013 21 / 42

Outline

A Review of Simple Linear Regression (Ch. 4)

Formalizing the Simple Linear Regression Model

Estimating σ^2

Standardized residuals

Inference for the slope parameter

Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

A Review of Simple Linear Regression (Ch. 4)

Formalizing the Simple Linear Regression Model

Estimating σ^2

Standardized residuals

The line-fitting sample variance

Recall:

$$\widehat{y}_i = b_0 + b_1 x_i$$

$$e_i = y_i - y_i$$

The line-fitting sample variance, also called mean squared error (MSE) is:

$$s_{LF}^2 = \frac{1}{n-2} \sum_i (y_i - \widehat{y}_i)^2 = \frac{1}{n-2} \sum_i e_i^2$$

and it satisfies:

$$E(s_{LF}^2) = \sigma^2$$

• The line-fitting sample standard deviation is just $s_{LF} = \sqrt{s_{LF}^2}$

© Will Landau

Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

A Review of Simple Linear Regression (Ch. 4)

Formalizing the Simple Linear Regression Model

Estimating σ^2

Standardized residuals

A mixture of Al₂O₃, polyvinyl alcohol, and water was prepared, dried overnight, crushed, and sieved to obtain 100 mesh size grains. These were pressed into cylinders at pressures from 2,000 psi to 10,000 psi, and cylinder densities were calculated.

x, Pressure (psi)	y, Density (g/cc)
2,000	2.486
2,000	2.479
2,000	2.472
4,000	2.558
4,000	2.570
4,000	2.580
6,000	2.646
6,000	2.657
6,000	2.653
8,000	2.724
8,000	2.774
8,000	2.808
10,000	2.861
10,000	2.879
10,000	2.858

Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

A Review of Simple Linear Regression (Ch. 4)

Formalizing the Simple Linear Regression Model

Estimating σ^2

Standardized residuals

Inference for

Simple Linear Regression (Ch.

- The fitted least squares line is $\hat{y}_i = 2.375 + 0.0000487 x_i$.
- The fitted values \hat{y}_i are:

Fitted Density Values

x, Pressure	\hat{y} , Fitted Density
2,000	2.4723
4,000	2.5697
6,000	2.6670
8,000	2.7643
10,000	2.8617

• And
$$\sum (y_i - \widehat{y}_i)^2$$
 is:

$$\sum (y_i - \hat{y}_i)^2 = (2.486 - 2.4723)^2 + (2.479 - 2.4723)^2 + (2.472 - 2.4723)^2 + (2.558 - 2.5697)^2 + \dots + (2.879 - 2.8617)^2 + (2.858 - 2.8617)^2 = .005153$$

Thus,
$$s_{LF}^2 = \frac{1}{n-2} \sum (y_i - \hat{y}_i)^2 = \frac{1}{15-2} \cdot 0.005153 = 0.00396 (g/cc)^2$$

 $s_{LF} = \sqrt{s_{LF}^2} = 0.0199g/cc$

© Will Landau

Iowa State University

9.1) Will Landau

> A Review of Simple Linear Regression (Ch. 4)

Inference for

Simple Linear Regression (Ch.

Formalizing the Simple Linear Regression Model

Estimating σ^2

Standardized residuals

Outline

A Review of Simple Linear Regression (Ch. 4)

Formalizing the Simple Linear Regression Model

Estimating σ^2

Standardized residuals

Inference for the slope parameter

Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

A Review of Simple Linear Regression (Ch. 4)

Formalizing the Simple Linear Regression Model

Estimating σ^2

Standardized residuals

Standardized residuals

- Recall that we assume $\varepsilon_1, \ldots, \varepsilon_n \stackrel{\text{iid}}{\sim} N(0, \sigma^2)$.
- We also have E(e_i) = 0, but because we're estimating the slope and intercept instead of using the true slope and intercept,

$$Var(e_j) = \sigma^2 \left(1 - \frac{1}{n} - \frac{(x_j - \overline{x})^2}{\sum_i (x_i - \overline{x})^2} \right)$$

We don't want Var(e_j) to vary with j, so we define the j'th standardized residual:

$$e_j^* = rac{e_j}{s_{LF}\sqrt{1-rac{1}{n}-rac{(x_j-\overline{x})^2}{\sum_i (x_i-\overline{x})^2}}}$$

which, under our model assumptions, is $\approx N(0, 1)$.

Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

A Review of Simple Linear Regression (Ch. 4)

Formalizing the Simple Linear Regression Model

Estimating σ^2

Standardized residuals

• Since $\overline{x} = 6000$, we can calculate $\sum (x_i - \overline{x})^2 = 1.2 \times 10^8$.

Calculations for Standardized Residuals in the Pressure/Density Study

$\sqrt{1 - \frac{1}{15} - \frac{(x - 6,000)^2}{120,000,000}}$
.894
.949
.966
.949
.894

Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

A Review of Simple Linear Regression (Ch. 4)

Formalizing the Simple Linear Regression Model

Estimating σ^2

Standardized residuals

Residuals and Standardized Residuals for the Pressure/Density Study				
x	е	Standardized Residual		
2,000	.0137, .0067,0003	.77, .38,02		
4,000	0117, .0003, .0103	62, .02, .55		
6,000	0210,0100,0140	-1.09,52,73		
8,000	0403, .0097, .0437	-2.13, .51, 2.31		
10,000	0007, .0173,0037	04, .97,21		

Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

A Review of Simple Linear Regression (Ch. 4)

Formalizing the Simple Linear Regression Model

Estimating σ^2

Standardized residuals

Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

A Review of Simple Linear Regression (Ch. 4)

Formalizing the Simple Linear Regression Model

Estimating σ^2

Standardized residuals

Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

A Review of Simple Linear Regression (Ch. 4)

Formalizing the Simple Linear Regression Model

Estimating σ^2

Standardized residuals

Outline

A Review of Simple Linear Regression (Ch. 4)

Formalizing the Simple Linear Regression Model

Estimating σ^2

Standardized residuals

Inference for the slope parameter

Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

A Review of Simple Linear Regression (Ch. 4)

Formalizing the Simple Linear Regression Model

Estimating σ^2

Standardized residuals

Inference for the slope parameter

- Since b₁ was estimated from the data, we can treat it as a random variable.
- Under the assumptions of the simple linear regression model,

$$b_1 \sim N\left(\beta_1, \ \frac{\sigma^2}{\sum_i (x_i - \overline{x})^2}\right)$$

$$Z = \frac{b_1 - \beta_1}{\frac{\sigma}{\sqrt{\sum_i (x_i - \overline{x})^2}}} \sim N(0, 1)$$

and

$$T = \frac{b_1 - \beta_1}{\frac{s_{LF}}{\sqrt{\sum_i (x_i - \overline{x})^2}}} \sim t_{n-2}$$

Will Landau

A Review of Simple Linear Regression (Ch. 4)

Formalizing the Simple Linear Regression Model

Estimating σ^2

Standardized residuals

Inference for the slope parameter

• If we want to test $H_0: \beta_1 = \#$, we can use the test statistic:

$$\mathcal{K} = rac{b_1 - \#}{rac{s_{LF}}{\sqrt{\sum_i (x_i - \overline{x})^2}}} \sim t_{n-2}$$

which has a t_{n-2} distribution if H_0 is true and the model assumptions are true.

• We can write a two-sided $1 - \alpha$ confidence interval as:

$$\left(b_1 - t_{n-2, 1-\alpha/2} \cdot \frac{s_{LF}}{\sqrt{\sum_i (x_i - \overline{x})^2}}, b_1 + t_{n-2,1-\alpha/2} \cdot \frac{s_{LF}}{\sqrt{\sum_i (x_i - \overline{x})^2}}\right)$$

The one-sided confidence intervals are analogous.

© Will Landau

1

Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

A Review of Simple Linear Regression (Ch. 4)

Formalizing the Simple Linear Regression Model

Estimating σ^2

Standardized residuals

١

- ► I will construct a two-sided 95% confidence interval for β_1 ($\alpha = 0.05$).
- From before, $b_1 = 0.0000487 \text{ g/cc/psi}$, $\sum_i (x_i - \overline{x})^2 = 1.2 \times 10^8$, and $s_{LF} = 0.0199$.

•
$$t_{n-2, 1-\alpha/2} = t_{13, 0.975} = 2.16$$

The confidence interval is then:

$$\left(\begin{array}{c} 0.0000487 - 2.16 \frac{0.0199}{\sqrt{1.2 \times 10^8}}, \ 0.0000487 + 2.16 \frac{0.0199}{\sqrt{1.2 \times 10^8}} \end{array} \right) \\ (0.0000448, \ 0.0000526) \end{array}$$

We're 95% confident that for every unit increase in psi, the density of the next ceramic increases by anywhere between 0.0000448 g/cc and 0.0000526 g/cc. Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

A Review of Simple Linear Regression (Ch. 4)

Formalizing the Simple Linear Regression Model

Estimating σ^2

Standardized residuals

In JMP:

- Open the data in a spreadsheet with:
 - 1 column for x
 - 1 column for y
- For simple linear regression
 - $\blacktriangleright \ \ {\sf Click} \ {\sf Analyze} \to {\sf Fit} \ {\sf Y} \ {\sf by} \ {\sf X}$
 - Y variable in Y, Response
 - X variable in X, Factor
 - Click red triangle Fit line

Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

A Review of Simple Linear Regression (Ch. 4)

Formalizing the Simple Linear Regression Model

Estimating σ^2

Standardized residuals

HSquare	0.982193
RSquare Adj	0.980824
Root Mean Square Error	0.019909
Mean of Response	2.667
Observations (or Sum Wgts)	15

Lack Of Fit

Analysis of Variance

		Sum of		
Source	DF	Squares	Mean Square	F Ratio
Model	1	0.28421333	0.284213	717.0604
Error	13	0.00515267	0.000396	Prob > F
C. Total	14	0.28936600		<.0001*

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob>iti
Intercept	2.375	0.012055	197.01	<.0001*
pressure	4.8667e-5	1.817e-6	26.78	<.0001*

Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

A Review of Simple Linear Regression (Ch. 4)

Formalizing the Simple Linear Regression Model

Estimating σ^2

Standardized residuals

Parameter Estimates

 Term
 Estimate
 Std Error
 t Ratio
 Prob>ltl

 Intercept
 2.375
 0.012055
 197.01
 <.0001*</td>

 pressure
 4.8667e-5
 1.817e-6
 26.78
 <.0001*</td>

I can construct the same confidence interval using the JMP output:

►
$$b_1 = 4.87 \times 10^{-5}$$
, $t_{n-1,1-\alpha/2} = 2.16$,
 $\widehat{SD}(b_1) = 1.817 \times 10^{-6}$

$$\begin{aligned} (4.87\times 10^{-5} - 2.16\cdot 1.817\times 10^{-6}, \\ 4.87\times 10^{-5} + 2.16\cdot 1.817\times 10^{-6}) \\ = (0.0000448, \ 0.0000526) \end{aligned}$$

Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

A Review of Simple Linear Regression (Ch. 4)

Formalizing the Simple Linear Regression Model

Estimating σ^2

Standardized residuals

Your turn: ceramics

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob>iti
Intercept	2.375	0.012055	197.01	<.0001*
pressure	4.8667e-5	1.817e-6	26.78	<.0001*

At α = 0.05, conduct a two-sided hypothesis test of H₀ : β₁ = 0 using the method of p-values. Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

A Review of Simple Linear Regression (Ch. 4)

Formalizing the Simple Linear Regression Model

Estimating σ^2

Standardized residuals

Answers: ceramics

1.
$$H_0: \beta_1 = 0, \ H_a: \beta_1 \neq 0.$$

- **2**. $\alpha = 0.05$
- 3. Use the test statistic:

$$\mathcal{K} = rac{b_1 - 0}{rac{s_{LF}}{\sqrt{\sum (x_i - \overline{x})^2}}} = rac{b_1}{\widehat{SD}(b_1)}$$

I assume:

- H_0 is true.
- The model, Y_i = β₀ + β₁x_i + ε_i with errors ε_i ∼ iid N(0, σ²), is correct.

Under these assumptions, $K \sim t_{n-2} = t_{15-2} = t_{13}$

Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

A Review of Simple Linear Regression (Ch. 4)

Formalizing the Simple Linear Regression Model

Estimating σ^2

Standardized residuals

Answers: ceramics

4. The moment of truth:

$$\begin{split} \mathcal{K} &= \frac{4.87 \times 10^{-5}}{1.817 \times 10^{-6}} = 26.80 \quad (\text{``t Ratio'' in JMP output}) \\ \text{p-value} &= \mathcal{P}(|t_{13}| > |26.8|) = \mathcal{P}(t_{13} > 26.8) + \mathcal{P}(t_{13} < -26.8) \\ &< 0.0001 \quad (\text{`'Prob} > |t|\text{'' in JMP output}) \end{split}$$

- 5. With a p-value $< 0.0001 < 0.05 = \alpha$, we reject H_0 and conclude H_a .
- 6. There is overwhelming evidence that the true slope of the line is different from 0.

Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

A Review of Simple Linear Regression (Ch. 4)

Formalizing the Simple Linear Regression Model

Estimating σ^2

Standardized residuals