Inference for Simple Linear Regression (Ch.

9.1)

Will Landau

Iowa State University

Apr 11, 2013

Outline

Inference for Simple Linear Regression (Ch.

A Review of Simple Linear Regression (Ch. 4)

Formalizing the Simple Linear Regression Model

A Review of Simple Linear
Regression (Ch. 4)
Formalizing the
Simple Linear
Regression Model
Estimating σ^{2}
Standardized
residuals
Inference for the slope parameter

Standardized residuals

Inference for the slope parameter
densities were calculated.

Pressing pressures and specimen densities for a ceramic compound

A mixture of $\mathrm{Al}_{2} \mathrm{O}_{3}$, polyvinyl alcohol, and water was prepared, dried overnight, crushed, and sieved to obtain 100 mesh size grains. These were pressed into cylinders at pressures from 2,000 psi to $10,000 \mathrm{psi}$, and cylinder

$\times($ pressure in psi)	$\mathrm{y}($ density in $\mathrm{g} / \mathrm{cc})$
2000.00	2.49
2000.00	2.48
2000.00	2.47
4000.00	2.56
4000.00	2.57
4000.00	2.58
6000.00	2.65
6000.00	2.66
6000.00	2.65
8000.00	2.72
8000.00	2.77
8000.00	2.81
10000.00	2.86
10000.00	2.88
10000.00	2.86

Formalizing the
Simple Linear
Regression Model
Estimating σ^{2}
Standardized
residuals
Inference for the slope parameter

Scatterplot: ceramics data

Inference for Simple Linear Regression (Ch.

Will Landau

A Review of Simple Linear Regression (Ch. 4)

Formalizing the
Simple Linear
Regression Model
Estimating σ^{2}
Standardized
residuals
Inference for the
slope parameter

- The line, $y \approx 2.375+4.867 \times 10^{-5} x$, is the regression line fit to the data.

Why fit a regression line?

1. To predict future values of y based on x.

- I.e., a new ceramic under pressure $x=5000$ psi should have a density of $2.375+4.867 \times 10^{-5} \cdot 5000=2.618$ g / cc.

2. To characterize the relationship between x and y in terms of strength, direction, and shape.

- In the ceramics data, density has a strong, positive,

Formalizing the
Simple Linear
Regression Model
Estimating σ^{2}
Standardized residuals

Inference for the slope parameter linear association with x.

- On average, the density increases by $4.867 \times 10^{-5} \mathrm{~g} / \mathrm{cc}$ for every increase in pressure of 1 psi .

Fitting a linear regression line

- For a response variable y and a predictor variable x, we declare:

$$
y \approx b_{0}+b_{1} x
$$

A Review of
Simple Linear
Regression (Ch. 4)
Formalizing the
Simple Linear
Regression Model
Estimating σ^{2}
Standardized
residuals
Inference for the slope parameter

- and then calculate the intercept b_{0} and slope b_{1} using least squares.
- We apply the principle of least squares: that is, the best-fit line is given by minimizing the loss function in terms of b_{0} and b_{1} :

$$
S\left(b_{0}, b_{1}\right)=\sum_{i=1}^{n}\left(y_{i}-\widehat{y}_{i}\right)^{2}
$$

- Here, $\widehat{y}_{i}=b_{0}+b_{1} x_{i}$

Minimize $\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}$ to get the line as close as possible to the points.

Will Landau

- From the principle of least squares, one can derive the normal equations:

$$
\begin{aligned}
n b_{0}+b_{1} \sum_{i=1}^{n} x_{i} & =\sum_{i=1}^{n} y_{i} \\
b_{0} \sum_{i=1}^{n} x_{i}+b_{1} \sum_{i=1}^{n} x_{i}^{2} & =\sum_{i=1}^{n} x_{i} y_{i}
\end{aligned}
$$

A Review of
Simple Linear
Regression (Ch. 4)
Formalizing the
Simple Linear
Regression Model
Estimating σ^{2}
Standardized
residuals
Inference for the slope parameter

- and then solve for b_{0} and b_{1} :

$$
b_{1}=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}} \quad b_{0}=\bar{y}-b_{1} \bar{x}
$$

Example: plastics hardness data

Eight batches of plastic are made. From each batch one test item is molded. At a given time (in hours), it hardness is measured in units (assume freshly-melted plastic has a hardness of 0 units). The following are the 8 measurements and times.

A Review of
Simple Linear
Regression (Ch. 4)
Formalizing the
Simple Linear
Regression Model
Estimating σ^{2}
Standardized
residuals
Inference for the slope parameter

Fitting the line

Inference for Simple Linear Regression (Ch
9.1)

Will Landau

- $\bar{x}=51$
- $\bar{y}=277.125$

x	y	$x_{i}-\bar{x}$	$y_{i}-\bar{y}$	$\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)$	$\left(x_{i}-\bar{x}\right)^{2}$
32.00	230.00	-19.00	-47.12	895.38	361.00
72.00	323.00	21.00	45.88	963.38	441.00
64.00	298.00	13.00	20.88	271.38	169.00
48.00	255.00	-3.00	-22.12	66.38	9.00
16.00	199.00	-35.00	-78.12	2734.38	1225.00
40.00	248.00	-11.00	-29.12	320.38	121.00
80.00	359.00	29.00	81.88	2374.38	841.00
56.00	305.00	5.00	27.88	139.38	25.00

A Review of
Simple Linear
Regression (Ch. 4)
Formalizing the
Simple Linear
Regression Model
Estimating σ^{2}
Standardized
residuals
Inference for the slope parameter

- $\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)=895.38+963.38+\cdots 139.38=7765$
- $\sum\left(x_{i}-\bar{x}\right)^{2}=361+441+\cdots 25=3192$
- $b_{1}=\frac{7765}{3192}=2.43$
- $b_{0}=\bar{y}-b_{1} \bar{x}=277.125-2.43 \cdot 51=153.19$

Plot the line to check the fit.

Inference for Simple Linear
Regression (Ch.
9.1)

Will Landau

A Review of
Simple Linear
Regression (Ch. 4)
Formalizing the
Simple Linear
Regression Model
Estimating σ^{2}
Standardized
residuals
Inference for the
slope parameter

Interpret the model terms

- $b_{1}=2.43$ means that on average, the plastic hardens 2.43 more units for every additional hour it is allowed to harden.

A Review of
Simple Linear
Regression (Ch. 4)
Formalizing the
Simple Linear
Regression Model
Estimating σ^{2}
Standardized
residuals
Inference for the slope parameter

- But we know that the plastics were completely molten at the very beginning, with a hardness of 0 .
- Don't extrapolate: i.e., predict y values beyond the range of the x data.

Linear correlation: a measure of usefulness

- Linear correlation: a measure of usefulness of a fitted

A Review of
Simple Linear
Regression (Ch. 4)
Formalizing the
Simple Linear
Regression Model
Estimating σ^{2}
Standardized
residuals

- As it turns out:

$$
r=b_{1} \frac{s_{x}}{s_{y}}
$$

where s_{x} is the standard deviation of the x_{i} 's and x_{y} is the standard deviation of the y_{i} 's.

Facts about linear correlation

Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

- $-1 \leq r \leq 1$
- $r<0$ means a negative slope, $r>0$ means a positive slope
- High $|r|$ means x and y have a strong linear relationship (high correlation), and low $|r|$ implies a weak linear relationship (low correlation).

A Review of
Simple Linear
Regression (Ch. 4)
Formalizing the
Simple Linear
Regression Model
Estimating σ^{2}
Standardized
residuals

Inference for the slope parameter

Coefficient of determination

 usefulness of a fitted line, defined by:$$
R^{2}=\frac{\sum\left(y_{i}-\bar{y}\right)^{2}-\sum\left(y_{i}-\widehat{y}_{i}\right)^{2}}{\sum\left(y_{i}-\bar{y}\right)^{2}}
$$

A Review of
Simple Linear
Regression (Ch. 4)
Formalizing the
Simple Linear
Regression Model
Estimating σ^{2}
Standardized
residuals
Inference for the slope parameter

- Interpretation: R^{2} is the fraction of variation in the response variable (y) explained by the fitted line.
- Ceramics data: $R^{2}=r^{2}=0.9911^{2}=0.9823$, so 98.2279% of the variation in density is explained by pressure. Hence, the line is useful for predicting density from pressure.
- Plastics data: $R^{2}=r^{2}=0.9796^{2}=0.9596$, so 95.9616% of the variation in hardness is explained by time. Hence, so the line is useful for predicting hardness from time.

Outline

Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

A Review of Simple Linear Regression (Ch. 4)

Formalizing the Simple Linear Regression Model

Estimating σ^{2}
Standardized
residuals
Inference for the slope parameter

Standardized residuals

Inference for the slope parameter

The informal simple linear regression model

- Up until now, we have looked at fitted lines of the form:

$$
y_{i}=b_{0}+b_{1} x_{i}+e_{i}
$$

where:

- $y_{1}, y_{2}, \ldots, y_{n}$ are the fixed, observed values of the response variable.
- $x_{1}, x_{2}, \ldots, x_{n}$ are the fixed, observed values of the predictor variable.

A Review of
Simple Linear

Formalizing the
Simple Linear
Regression Model
Estimating σ^{2}
Standardized
residuals
Inference for the slope parameter

- b_{0} is the estimated slope of the line based on sample data.
- b_{1} is the estimated intercept of the line based on sample data.
- e_{i} is the residual of the i 'th unit of the sample.

The formal simple linear regression model

$$
Y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i}
$$

A Review of
Simple Linear
Regression (Ch. 4)
Formalizing the
Simple Linear
Regression Model
Estimating σ^{2}
Standardized
residuals
Inference for the slope parameter

- β_{0} is a parameter denoting the true intercept of the line if we fit it to the population.
- β_{1} is a parameter denoting the true slope of the line if we fit it to the population.
- $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n}$ are random variables called error terms.

The formal simple linear regression model

Inference for Simple Linear Regression (Ch.

- We assume:

$$
\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{n} \stackrel{\text { iid }}{\sim} N\left(0, \sigma^{2}\right)
$$

- Which means that for all i :

$$
Y_{i} \stackrel{\mathrm{iid}}{\sim} N\left(\beta_{0}+\beta_{1} x_{i}, \sigma^{2}\right)
$$

A Review of
Simple Linear
Regression (Ch. 4)
Formalizing the
Simple Linear
Regression Model
Estimating σ^{2}
Standardized
residuals
Inference for the slope parameter

- We often say:

$$
\mu_{y \mid x}=\beta_{0}+\beta_{1} x
$$

The formal simple linear regression model

Inference for Simple Linear Regression (Ch.

x

Outline

Inference for Simple Linear Regression (Ch.

Will Landau

A Review of Simple Linear Regression (Ch. 4)

Formalizing the Simple Linear Regression Model

Estimating σ^{2}
residuals
Inference for the slope parameter

Standardized residuals

Inference for the slope parameter

The line-fitting sample variance

Inference for Simple Linear Regression (Ch.
9.1)

Will Landau

- $\hat{y}_{i}=b_{0}+b_{1} x_{i}$
- $e_{i}=y_{i}-\widehat{y}_{i}$
- The line-fitting sample variance, also called mean squared error (MSE) is:

$$
s_{L F}^{2}=\frac{1}{n-2} \sum_{i}\left(y_{i}-\widehat{y}_{i}\right)^{2}=\frac{1}{n-2} \sum_{i} e_{i}^{2}
$$ and it satisfies:

$$
E\left(s_{L F}^{2}\right)=\sigma^{2}
$$

- The line-fitting sample standard deviation is just $s_{L F}=\sqrt{s_{L F}^{2}}$

Example: ceramics

- A mixture of $\mathrm{Al}_{2} \mathrm{O}_{3}$, polyvinyl alcohol, and water was prepared, dried overnight, crushed, and sieved to obtain 100 mesh size grains. These were pressed into cylinders at pressures from 2,000 psi to 10,000 psi, and cylinder densities were calculated.

x, Pressure (psi)	y, Density (g/cc)
2,000	2.486
2,000	2.479
2,000	2.472
4,000	2.558
4,000	2.570
4,000	2.580
6,000	2.646
6,000	2.657
6,000	2.653
8,000	2.724
8,000	2.774
8,000	2.808
10,000	2.861
10,000	2.879
10,000	2.858

A Review of
Simple Linear
Regression (Ch. 4)
Formalizing the
Simple Linear
Regression Model
Estimating σ^{2}
Standardized
residuals
Inference for the slope parameter

Example: ceramics

Inference for Simple Linear Regression (Ch.

Formalizing the
Simple Linear
Regression Model
Estimating σ^{2}
Standardized
residuals
Inference for the
slope parameter

Example: ceramics

- The fitted least squares line is $\widehat{y}_{i}=2.375+0.0000487 x_{i}$.
- The fitted values \widehat{y}_{i} are:

Inference for Simple Linear Regression (Ch.
9.1)

Will Landau
Fitted Density Values

x, Pressure	\hat{y}, Fitted Density
2,000	2.4723
4,000	2.5697
6,000	2.6670
8,000	2.7643
10,000	2.8617

A Review of
Simple Linear
Regression (Ch.
Formalizing the
Simple Linear
Regression Model
Estimating σ^{2}
Standardized residuals

- And $\sum\left(y_{i}-\widehat{y}_{i}\right)^{2}$ is:

Inference for the slope parameter

$$
\begin{aligned}
\sum\left(y_{i}-\hat{y}_{i}\right)^{2}= & (2.486-2.4723)^{2}+(2.479-2.4723)^{2}+(2.472-2.4723)^{2} \\
& +(2.558-2.5697)^{2}+\cdots+(2.879-2.8617)^{2} \\
& +(2.858-2.8617)^{2} \\
= & .005153
\end{aligned}
$$

- Thus, $s_{L F}^{2}=\frac{1}{n-2} \sum\left(y_{i}-\widehat{y}_{i}\right)^{2}=\frac{1}{15-2} \cdot 0.005153=0.00396(g / c c)^{2}$
$-s_{L F}=\sqrt{s_{L F}^{2}}=0.0199 g / c c$

Outline

Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

A Review of Simple Linear Regression (Ch. 4)

Formalizing the Simple Linear Regression Model

Estimating σ^{2} Standardized residuals

Inference for the slope parameter

Standardized residuals

Inference for the slope parameter

Standardized residuals

- We also have $E\left(e_{i}\right)=0$, but because we're estimating the slope and intercept instead of using the true slope and intercept,

$$
\operatorname{Var}\left(e_{j}\right)=\sigma^{2}\left(1-\frac{1}{n}-\frac{\left(x_{j}-\bar{x}\right)^{2}}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}\right)
$$

- We don't want $\operatorname{Var}\left(e_{j}\right)$ to vary with j, so we define the

A Review of
Simple Linear
Regression (Ch. 4)
Formalizing the
Simple Linear
Regression Model
Estimating σ^{2}
Standardized residuals

Inference for the slope parameter j 'th standardized residual:

$$
e_{j}^{*}=\frac{e_{j}}{s_{L F} \sqrt{1-\frac{1}{n}-\frac{\left(x_{j}-\bar{x}\right)^{2}}{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}}}
$$

which, under our model assumptions, is $\approx N(0,1)$.

Example: ceramics

Inference for Simple Linear Regression (Ch.
9.1)

Will Landau

- Since $\bar{x}=6000$, we can calculate $\sum\left(x_{i}-\bar{x}\right)^{2}=1.2 \times 10^{8}$.

Calculations for Standardized Residuals in the Pressure/Density Study

x	$\sqrt{1-\frac{1}{15}-\frac{(x-6,000)^{2}}{120,000,000}}$
2,000	.894
4,000	.949
6,000	.966
8,000	.949
10,000	.894

A Review of
Simple Linear
Regression (Ch. 4)
Formalizing the
Simple Linear
Regression Model
Estimating σ^{2}
Standardized
residuals
Inference for the slope parameter

Example: ceramics

Inference for Simple Linear Regression (Ch.
9.1)

Will Landau

A Review of
Simple Linear
Regression (Ch. 4)
Residuals and Standardized Residuals for the Pressure/Density Study

x	e	Standardized Residual
2,000	$.0137, .0067,-.0003$	$.77, .38,-.02$
4,000	$-.0117, .0003, .0103$	$-.62, .02, .55$
6,000	$-.0210,-.0100,-.0140$	$-1.09,-.52,-.73$
8,000	$-.0403, .0097, .0437$	$-2.13, .51,2.31$
10,000	$-.0007, .0173,-.0037$	$-.04, .97,-.21$

Formalizing the
Simple Linear
Regression Model
Estimating σ^{2}
Standardized
residuals
Inference for the slope parameter

Example: ceramics

Inference for Simple Linear Regression (Ch.

A Review of
Simple Linear
Regression (Ch. 4)
Formalizing the
Simple Linear
Regression Model
Estimating σ^{2}
Standardized
residuals
Inference for the
slope parameter

Example: ceramics

Inference for Simple Linear Regression (Ch.

A Review of
Simple Linear
Regression (Ch. 4)
Formalizing the
Simple Linear
Regression Model
Estimating σ^{2}
Standardized
residuals
Inference for the slope parameter

Outline

Inference for Simple Linear Regression (Ch. 9.1)

Will Landau

A Review of Simple Linear Regression (Ch. 4)

Formalizing the Simple Linear Regression Model

Formalizing the
Simple Linear
Regression Model
Estimating σ^{2}
Standardized
Estimating σ^{2} residuals

Inference for the slope parameter

Standardized residuals

Inference for the slope parameter

Inference for the slope parameter

- Since b_{1} was estimated from the data, we can treat it as a random variable.
- Under the assumptions of the simple linear regression model,

Inference for Simple Linear Regression (Ch
9.1)

Will Landau

A Review of
Simple Linear
Regression (Ch. 4)
Formalizing the
Simple Linear
Regression Model
Estimating σ^{2}
Standardized
residuals

- Thus:

$$
Z=\frac{b_{1}-\beta_{1}}{\frac{\sigma}{\sqrt{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}}} \sim N(0,1)
$$

and

$$
T=\frac{b_{1}-\beta_{1}}{\frac{s_{L F}}{\sqrt{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}}} \sim t_{n-2}
$$

Inference for the slope parameter

Inference for Simple Linear
Regression (Ch.
9.1)

Will Landau

- If we want to test $H_{0}: \beta_{1}=\#$, we can use the test statistic:

$$
K=\frac{b_{1}-\#}{\frac{s_{L F}}{\sqrt{\sum_{i}\left(x_{i}-\bar{x}\right)^{2}}}} \sim t_{n-2}
$$

A Review of
Simple Linear
Regression (Ch. 4)
Formalizing the
Simple Linear
Regression Model
which has a t_{n-2} distribution if H_{0} is true and the model assumptions are true.

- We can write a two-sided $1-\alpha$ confidence interval as:

Estimating σ^{2}
Standardized
residuals
Inference for the slope parameter

- The one-sided confidence intervals are analogous.

Example: ceramics

- I will construct a two-sided 95% confidence interval for β_{1} ($\alpha=0.05$).
- From before, $b_{1}=0.0000487 \mathrm{~g} / \mathrm{cc} / \mathrm{psi}$, $\sum_{i}\left(x_{i}-\bar{x}\right)^{2}=1.2 \times 10^{8}$, and $s_{L F}=0.0199$.
- $t_{n-2,1-\alpha / 2}=t_{13,0.975}=2.16$.
- The confidence interval is then:

A Review of
Simple Linear
Regression (Ch. 4)
Formalizing the
Simple Linear
Regression Model
Estimating σ^{2}
Standardized residuals

Inference for the slope parameter

- We're 95% confident that for every unit increase in psi, the density of the next ceramic increases by anywhere between $0.0000448 \mathrm{~g} / \mathrm{cc}$ and $0.0000526 \mathrm{~g} / \mathrm{cc}$.

Example: ceramics

 Simple Linear Regression (Ch.9.1)

Will Landau

A Review of
Simple Linear

- In JMP:
- Open the data in a spreadsheet with:

Regression (Ch. 4)

- 1 column for x
- 1 column for y
- For simple linear regression

Formalizing the
Simple Linear
Regression Model
Estimating σ^{2}
Standardized
residuals

- Click Analyze \rightarrow Fit Y by X

Inference for the

- Y variable - in Y, Response
- X variable - in X, Factor
- Click red triangle - Fit line

Example: ceramics

Inference for Simple Linear Regression (Ch

Will Landau

- Lack Of Fit				
- Analysis of Variance				
Source	DF	Sum of Squares M	Mean Square	F Ratio
Model	1	0.28421333	0.284213	717.0604
Error	13	0.00515267	0.000396	Prob $>$ F
C. Total	14	0.28936600		<.0001*
- Parameter Estimates				
Term	Estim	mate Std Error	or t Ratio Prome	Prob>lt\|
Intercept		$2.375 \quad 0.012055$	55197.01 <	<.0001*
pressure	4.866	67e-5 1.817e-6	-6 26.78 <	<.0001*

A Review of
Simple Linear
Regression (Ch. 4)
Formalizing the
Simple Linear
Regression Model
Estimating σ^{2}
Standardized residuals

Inference for the slope parameter

Example: ceramics

Inference for Simple Linear Regression (Ch.
9.1)

Will Landau

Parameter Estimates

Term
Intercept pressure

Estimate Std Error t Ratio Prob>l|t| $2.3750 .012055197 .01<.0001^{*}$ $4.8667 \mathrm{e}-5 \quad 1.817 \mathrm{e}-6 \quad 26.78<.0001^{*}$

A Review of
Simple Linear
Regression (Ch. 4)
Formalizing the
Simple Linear
Regression Model
Estimating σ^{2}
Standardized
residuals
Inference for the slope parameter

- $b_{1}=4.87 \times 10^{-5}, t_{n-1,1-\alpha / 2}=2.16$, $\widehat{S D}\left(b_{1}\right)=1.817 \times 10^{-6}$

$$
\begin{aligned}
& \left(4.87 \times 10^{-5}-2.16 \cdot 1.817 \times 10^{-6}\right. \\
& \left.\quad 4.87 \times 10^{-5}+2.16 \cdot 1.817 \times 10^{-6}\right) \\
& =(0.0000448,0.0000526)
\end{aligned}
$$

Parameter Estimates

Term
Intercept pressure

Estimate Std Error t Ratio Prob>l|t| $2.3750 .012055197 .01<0001^{*}$ 4.8667e-5 1.817e-6 $26.78<.0001^{*}$

Formalizing the
Simple Linear
Regression Model
Estimating σ^{2}
Standardized
residuals
Inference for the slope parameter

- At $\alpha=0.05$, conduct a two-sided hypothesis test of $H_{0}: \beta_{1}=0$ using the method of p -values.

Answers: ceramics

Inference for Simple Linear Regression (Ch 9.1)

Will Landau

1. $H_{0}: \beta_{1}=0, H_{a}: \beta_{1} \neq 0$.
2. $\alpha=0.05$
3. Use the test statistic:

$$
K=\frac{b_{1}-0}{\frac{S_{L F}}{\sqrt{\sum\left(x_{i}-\bar{x}\right)^{2}}}}=\frac{b_{1}}{\widehat{S D}\left(b_{1}\right)}
$$

I assume:

- H_{0} is true.
- The model, $Y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i}$ with errors $\varepsilon_{i} \sim$ iid $N\left(0, \sigma^{2}\right)$, is correct.
Under these assumptions, $K \sim t_{n-2}=t_{15-2}=t_{13}$

Answers: ceramics

4. The moment of truth:

A Review of
Simple Linear
Regression (Ch. 4)
Formalizing the
Simple Linear
Regression Model

$$
\text { p-value }=P\left(\left|t_{13}\right|>|26.8|\right)=P\left(t_{13}>26.8\right)+P\left(t_{13}<-26.8\right)
$$

Estimating σ^{2}

$$
<0.0001 \quad \text { ("Prob }>|t| " \text { in JMP output) }
$$

Standardized residuals

Inference for the slope parameter
5. With a p-value $<0.0001<0.05=\alpha$, we reject H_{0} and conclude H_{a}.
6. There is overwhelming evidence that the true slope of the line is different from 0 .

