Inference for Unstructured Multisample Studies (Ch. 7.1 and 7.4)

Will Landau

Iowa State University

Apr 25, 2013

Inference for Unstructured Multisample Studies (Ch. 7.1 and 7.4)

Will Landau

The one-way ANOVA model

Residuals and fitted values

Variance estimation

Standardized residuals

Outline

The one-way ANOVA model

Residuals and fitted values

Variance estimation

Standardized residuals

Inference

Inference for Unstructured Multisample Studies (Ch. 7.1 and 7.4)

Will Landau

The one-way ANOVA model

Residuals and fitted values

Variance estimation

Standardized residuals

The one-way ANOVA model

- Suppose we have:
 - Some response variable, Y
 - Some covariate factor, X, with levels i = 1, 2, ..., I and n_i observations at level i.
- The one-way ANOVA model, sometimes called the one-way normal model, is:

$$Y_{ij} = \mu_i + \varepsilon_{ij}$$

where:

- The ε_{ij} 's are iid $N(0, \sigma^2)$
- μ_i is the true mean response at level *i* of the factor.

•
$$j = 1, 2, \ldots, n_i$$
.

Inference for Unstructured Multisample Studies (Ch. 7.1 and 7.4)

Will Landau

The one-way ANOVA model

Residuals and fitted values

Variance estimation

Standardized residuals

The one-way ANOVA model

$$Y_{ij} = \mu_i + \varepsilon_{ij}$$

Inference for Unstructured Multisample Studies (Ch. 7.1 and 7.4)

Will Landau

The one-way ANOVA model

Residuals and fitted values

Variance estimation

Standardized residuals

 Compressive strengths of 8 different formulas of concrete:

 But the order of the numbers given to the formulas is meaningless. It wouldn't make sense to do a simple linear regression of strength on formula. Inference for

Unstructured Multisample Studies (Ch. 7.1 and 7.4)

Will Landau

The one-way ANOVA model

Residuals and

Instead of:

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$

with Y_i as strength and X_i as the formula index, we use:

$$Y_{ij} = \mu_i + \varepsilon_{ij}$$

where:

- *i* is the formula index, $i = 1, 2, \ldots, 8$
- ▶ *j* is the index of a specimen within the formula *i* group.

Inference for Unstructured Multisample Studies (Ch. 7.1 and 7.4)

Will Landau

The one-way ANOVA model

Residuals and fitted values

Variance estimation

Standardized residuals

Example: springs

Spring constants of three types of steel springs:

Empirical Spring Constants							
Type 1 Springs	Type 2 Springs	Type 3 Springs					
1.99, 2.06, 1.99 1.94, 2.05, 1.88 2.30	2.85, 2.74, 2.74 2.63, 2.74, 2.80	2.10, 2.01, 1.93 2.02, 2.10, 2.05					

Inference for Unstructured Multisample Studies (Ch. 7.1 and 7.4)

Will Landau

The one-way ANOVA model

Residuals and fitted values

Variance estimation

Standardized residuals

Example: springs

- Doesn't make sense to regress exponential spring constant on spring type.
- Instead, we apply:

$$Y_{ij} = \mu_i + \varepsilon_{ij}$$

where:

- Y_{ij} is the exponential spring constant of spring type i spring number j.
- μ_i is the true mean exponential spring constant of type
 i.
- *i* is the formula index, $i = 1, 2, \ldots, 8$
- ▶ *j* is the index of a specimen within the formula *i* group.

Will Landau

The one-way ANOVA model

Residuals and fitted values

Variance estimation

Standardized residuals

Outline

The one-way ANOVA model

Residuals and fitted values

Variance estimation

Standardized residuals

Inference

Inference for Unstructured Multisample Studies (Ch. 7.1 and 7.4)

Will Landau

The one-way ANOVA model

Residuals and fitted values

Variance estimation

Standardized residuals

Fitted values

- Similarly to before, ŷ_{ij} is the fitted value corresponding to y_{ij}. It represents an estimate of the true mean response at factor level *i* and sample unit *j*.
- We treat all sample units equally, letting;

$$\widehat{y}_{ij} = \overline{y}_{i.} = rac{1}{n_i} \sum_{j=1}^{n_i} y_{ij}$$

the average of all the responses at factor level i.

• We get $\hat{y}_{ij} = \overline{y}_{i}$ by minimizing the loss function:

$$S(\mu_1,\mu_2,\ldots,\mu_I)=\sum_{ij}(y_{ij}-\mu_i)^2$$

over all the choices of $\mu_1, \mu_2, \ldots, \mu_l$, selecting \overline{y}_{i} to estimate μ_i .

The residuals e_{ij} are then:

$$e_{ij} = y_{ij} - \overline{y}_{i.}$$

© Will Landau

Inference for Unstructured Multisample Studies (Ch. 7.1 and 7.4)

Will Landau

The one-way ANOVA model

Residuals and fitted values

Variance estimation

Standardized residuals

Example Computations of Residuals for the Concrete Strength Study

Specimen	<i>i</i> , Concrete Formula	y _{ij} , Compressive Strength (psi)	$ \hat{y}_{ij} = \bar{y}_i, $ Fitted Value	$e_{ij}^{},$ Residual
1	1	5,800	5,635.3	164.7
2	1	4,598	5,635.3	-1,037.3
3	1	6,508	5,635.3	872.7
4	2	5,659	5,753.3	-94.3
5	2	6,225	5,753.3	471.7
:	:	:	÷	:
22	8	2,051	2,390.7	-339.7
23	8	2,631	2,390.7	240.3
24	8	2,490	2,390.7	99.3

Inference for Unstructured Multisample Studies (Ch. 7.1 and 7.4)

Will Landau

The one-way ANOVA model

Residuals and fitted values

Variance estimation

Standardized residuals

Inference for Unstructured Multisample Studies (Ch. 7.1 and 7.4)

Will Landau

The one-way ANOVA model

Residuals and fitted values

Variance estimation

Standardized residuals

Inference for

Unstructured Multisample Studies (Ch. 7.1 and 7.4)

Outline

The one-way ANOVA model

Residuals and fitted values

Variance estimation

Standardized residuals

Inference

Inference for Unstructured Multisample Studies (Ch. 7.1 and 7.4)

Will Landau

The one-way ANOVA model

Residuals and fitted values

Variance estimation

Standardized residuals

Variance estimation

We can compute a sample variance for each factor level:

$$s_i^2 = rac{1}{n_i - 1} \sum_j (y_{ij} - \overline{y}_{ij})^2$$

And we can compute a **pooled sample variance**:

$$s_P^2 = rac{(n_1-1)s_1^2 + (n_2-1)s_2^2 + \dots + (n_l-1)s_l^2}{(n_1-1) + (n_2-1) + \dots + (n_l-1)}$$

• The pooled sample standard deviation is just $s_P = \sqrt{s_P^2}$

Inference for Unstructured Multisample Studies (Ch. 7.1 and 7.4)

Will Landau

The one-way ANOVA model

Residuals and fitted values

Variance estimation

Standardized residuals

Variance estimation

If $n = \sum_{i} n_i$, then:	Multisample Studies (Ch. 7.1 and 7.4)
$s_P^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2 + \dots + (n_l - 1)s_l^2}{(n_l - 1)s_l + (n_l - 1)s_l + (n_l - 1)s_l}$	Will Landau
$(n_1 - 1) + (n_2 - 1) + \cdots + (n_l - 1)$	The one-way
$(n_1-1)\left(\frac{1}{n_l-1}\right)\sum_i(y_{1j}-\overline{y}_1)^2+\cdots+(n_l-1)\left(\frac{1}{n_l-1}\right)\sum_i(y_{lj}-\overline{y}_l)^2$	ANOVA model
$= (n_1 + 1)(n_2 + 1)(n_1 + 1)(n_2 + 1)(n_2 + 1)(n_1 + 1)(n_2 +$	Residuals and
n-1	fitted values
$=\frac{1}{n-I}\sum_{ij}(y_{ij}-\overline{y}_i)^2$	Variance estimation
$=\frac{1}{n-1}\sum_{j}e_{ij}^{2}$	Standardized residuals
n , jj	Inference

As it turns out,

$$E(s_P^2) = \sigma^2$$
$$\frac{n-l}{\sigma^2} s_P^2 \sim \chi_{n-l}^2$$

• A $1 - \alpha$ confidence interval for σ^2 is of the form:

$$\left(\frac{n-l}{\chi^2_{n-l,\ 1-\alpha/2}}s_P^2,\ \frac{n-l}{\chi^2_{n-l,\ \alpha/2}}s_P^2\right)$$

© Will Landau

Apr 25, 2013 16 / 34

Inference for

Unstructured

-			-
<i>i</i> , Concrete Formula	n _i , Sample Size	ÿ _i , Sample Mean (psi)	<i>s_i</i> , Sample Standard Deviation (psi)
1	$n_1 = 3$	$\bar{y}_1 = 5,635.3$	$s_1 = 965.6$
2	$n_2 = 3$	$\bar{y}_2 = 5,753.3$	$s_2 = 432.3$
3	$n_{3} = 3$	$\bar{y}_3 = 4,527.3$	$s_3 = 509.9$
4	$n_{4} = 3$	$\bar{y}_4 = 3,442.3$	$s_4 = 356.4$
5	$n_{5} = 3$	$\bar{y}_5 = 2,923.7$	$s_5 = 852.9$
6	$n_{6} = 3$	$\bar{y}_6 = 3,324.7$	$s_6 = 353.5$
7	$n_7 = 3$	$\bar{y}_7 = 1,551.3$	$s_7 = 505.5$
8	$n_8 = 3$	$\bar{y}_8 = 2,390.7$	$s_8 = 302.5$

Summary Statistics for the Concrete Strength Study

Inference for Unstructured Multisample Studies (Ch. 7.1 and 7.4)

Will Landau

The one-way ANOVA model

Residuals and fitted values

Variance estimation

Standardized residuals

$$s_P^2 = \frac{(3-1)(965.6)^2 + (3-1)(432.3)^2 + \dots + (3-1)(302.5)^2}{(3-1) + \dots + (3-1)}$$

= $2\frac{965.6^2 + 432.3^2 + \dots + 302.5^2}{16}$
= 338213 psi^2
 $s_P = \sqrt{338213} = 581.6\text{psi}$

Inference for Unstructured Multisample Studies (Ch. 7.1 and 7.4)

Will Landau

The one-way ANOVA model

Residuals and fitted values

Variance estimation

Standardized residuals

•
$$n = 24$$
, $l = 8$, $n - l = 16$.
• $\chi^2_{16, 0.95} = 26.296$, $\chi^2_{16, 0.05} = 7.962$
• Hence, a 90% 2-sided confidence interval for σ^2 is:

$$\left(\frac{16\cdot 581.6^2}{26.296}, \ \frac{16\cdot 581.6^2}{7.962}\right) = (205816, \ 679745.9)$$

and you can make a 90% confidence interval for σ by transforming the endpoints of the confidence interval for σ^2 :

$$(\sqrt{205816}, \sqrt{679745.9}) = (453.7, 824.5)$$

 We're 90% confident that the true overall standard deviation of compressive strength of the concrete within factor levels is between 453.7 psi and 824.5 psi.

© Will Landau

Inference for Unstructured Multisample Studies (Ch. 7.1 and 7.4)

Will Landau

The one-way ANOVA model

Residuals and fitted values

Variance estimation

Standardized residuals

Outline

The one-way ANOVA model

Residuals and fitted values

Variance estimation

Standardized residuals

Inference

Inference for Unstructured Multisample Studies (Ch. 7.1 and 7.4)

Will Landau

The one-way ANOVA model

Residuals and fitted values

Variance estimation

Standardized residuals

Standardized residuals

- Just as before, even though ε_{ij} ~ iid N(0, σ²), the e_{ij}'s don't have constant variance.
- The standardized residuals for the one-way ANOVA model are of the form:

$$e_{ij}^{*}=rac{e_{ij}}{s_{P}\sqrt{rac{n_{i}-1}{n_{i}}}}$$

which are about N(0,1) on average.

Inference for Unstructured Multisample Studies (Ch. 7.1 and 7.4)

Will Landau

The one-way ANOVA model

Residuals and fitted values

Variance estimation

Standardized residuals

Outline

The one-way ANOVA model

Residuals and fitted values

Variance estimation

Standardized residuals

Inference

Inference for Unstructured Multisample Studies (Ch. 7.1 and 7.4)

Will Landau

The one-way ANOVA model

Residuals and fitted values

Variance estimation

Standardized residuals

Inference for the one-way ANOVA model

- 1. $H_0: \mu_1 = \mu_2 = \cdots = \mu_I$, H_a : not all the μ_i 's are equal.
- 2. α is some sensible value.
- 3. The test statistic is:

$$K = \frac{MSR}{MSE} = \frac{SSR/(I-1)}{SSE/(n-I)}$$

Here,

- *n* is the number of observations.
- I is the number of levels of the covariate.

$$\blacktriangleright SSR = \sum_{ij} (\widehat{y}_{ij} - \overline{y}_{..})^2 = \sum_{ij} (\overline{y}_{i.} - \overline{y}_{..})^2$$

•
$$SSE = \sum_{ij} (y_{ij} - \widehat{y}_{ij})^2 = \sum_{ij} (y_{ij} - \overline{y}_{i.})^2$$

►
$$SST = \sum_{ij} (y_{ij} - \overline{y}_{..})^2$$

► $\overline{y}_{..} = \frac{1}{n} \sum_{ii} y_{ij}$

- Assume H₀ is true, the model is valid, and the ε_{ij}'s are iid N(0, σ²)
- Then, $K \sim F_{I-1, n-I}$.
- Reject H_0 if $K > F_{I-1, n-I, 1-\alpha}$

Iowa State University

Inference for Unstructured Multisample Studies (Ch. 7.1 and 7.4)

Will Landau

The one-way ANOVA model

Residuals and fitted values

Variance estimation

Standardized residuals

Inference for the one-way ANOVA model

4. The moment of truth: construct the ANOVA table:

Source	SS	df	MS	F
Covariate	SSR	I - 1	SSR/(I-1)	MSR/MSE
Error	SSE	n — I	SSE/(n-I)	

Inference for Unstructured Multisample Studies (Ch. 7.1 and 7.4)

Will Landau

The one-way ANOVA model

Residuals and fitted values

Variance estimation

Standardized residuals

1.
$$H_0: \mu_1 = \mu_2 = \cdots = \mu_8$$
, H_a : not all the μ_i 's are equal

- **2**. $\alpha = 0.05$
- 3. The test statistic is:

$$K = \frac{MSR}{MSE} = \frac{SSR/(I-1)}{SSE/(n-I)} = \frac{SSR/7}{SSE/16}$$

- Assume H₀ is true, the model is valid, and the ε_{ij}'s are iid N(0, σ²)
- Then, $K \sim F_{I-1, n-I}$.
- ▶ Reject H_0 if $K > F_{I-1, n-I, 1-\alpha} = F_{7,16,0.95} = 2.66$

Will Landau

The one-way ANOVA model

Residuals and fitted values

Variance estimation

Standardized residuals

 The moment of truth: we start by calculating SST, s²_P, and SSE:

$$(5,800 - 3,693.6)^{2} + (4,598 - 3,693.6)^{2} + (6,508 - 3,693.6)^{2} + \dots + (2,631 - 3,693.6)^{2} + (2,490 - 3,693.6)^{2} = 52,772,190 \text{ (psi)}^{2}$$

$$s_{\rm P}^2 = 338,213.1 \ ({\rm psi})^2 \ {\rm and} \ n-r = 16, {\rm so}$$

$$SSE = (n - r)s_{\rm P}^2 = 5,411,410 \, (\rm psi)^2$$

Lastly, we calculate SSR:

$$\sum_{i=1}^{r} n_i (\bar{y}_i - \bar{y})^2 = 47,360,780$$

Inference for Unstructured Multisample Studies (Ch. 7.1 and 7.4)

Will Landau

The one-way ANOVA model

Residuals and fitted values

Variance estimation

Standardized residuals

ANOVA Table (for testing $H_0: \mu_1 = \mu_2 = \cdots = \mu_8$)							
Source	SS	df	MS	F			
Treatments	47,360,780	7	6,765,826	20.0			
Error	5,411,410	16	338,213				
Total	52,772,190	23					

- 5. With K = 20.0 > 2.66, we reject H_0 and conclude H_a .
- 6. There is enough evidence to conclude that the compressive strength of the concrete varies with formula.

Inference for Unstructured Multisample Studies (Ch. 7.: and 7.4)
Will Landau
The one-way ANOVA model
Residuals and fitted values
Variance estimation
Standardized residuals
Inference

- The following data are taken from the paper Zero- Force Travel-Time Parameters for Ultrasonic Head-Waves in Railroad Rail by Bray and Leon- Salamanca (Materials Evaluation, 1985).
- Given are measurements in nanoseconds of the travel time (in excess of 36.1 µs) of a certain type of mechanical wave induced by mechanical stress in railroad rails.

Rail	Travel Time (nanoseconds above 36.1 μ s)
1	55, 53, 54
2	26, 37, 32
3	78,91,85
4	92, 100, 96
5	49, 51, 50
6	80, 85, 83

Inference for Unstructured Multisample Studies (Ch. 7.1 and 7.4)

Will Landau

The one-way ANOVA model

Residuals and fitted values

Variance estimation

Standardized residuals

We apply the model:

$$Y_{ij} = \mu_i + \varepsilon_{ij}$$

where:

- Y_{ij} is the observed travel time (ns) of the wave in excess of 26.1 μs for Rail i wave j.
- μ_i is the true mean travel time (ns) in excess of 26.1 μs of waves through Rail i.

Inference for Unstructured Multisample Studies (Ch. 7.1 and 7.4)

Will Landau

The one-way ANOVA model

Residuals and fitted values

Variance estimation

Standardized residuals

Inference for Unstructured Multisample Studies (Ch. 7.1 and 7.4)

Will Landau

The one-way ANOVA model

Residuals and fitted values

Variance estimation

Standardized residuals

Inference for

Unstructured

1.
$$H_0: \mu_1 = \mu_2 = \cdots = \mu_6$$
, H_a : not all the μ_i 's are equal.

- **2**. $\alpha = 0.05$
- 3. The test statistic is:

$$K = \frac{MSR}{MSE} = \frac{SSR/(I-1)}{SSE/(n-I)} = \frac{SSR/(6-1)}{SSE/(18-6)} = \frac{SSR/5}{SSE/12}$$

- Assume H₀ is true, the model is valid, and the ε_{ij}'s are iid N(0, σ²)
- Then, $K \sim F_{I-1, n-I}$.

• Reject
$$H_0$$
 if $K > F_{I-1, n-I, 1-\alpha} = F_{5,12,0.95} = 3.11$

Inference for Unstructured Multisample Studies (Ch. 7.1 and 7.4)

Will Landau

The one-way ANOVA model

Residuals and fitted values

Variance estimation

Standardized residuals

4. The moment of truth: load the data into JMP and fit travel time on rail, and *make sure the rail variable is a factor*.

000	000		Prob 3	5.jmp		
Click Category:	Prob 3.jmp		Rail	Time	e o o Rail	
File		1	1	55	Dellin Table Delt Glassi	011
Basic		2	1	53	Hail' in Table Prob 3.jmp	OK
Multivoristo		3	1	54	Column Name Rail	Cancel
Beliability		4	2	26		cancer
Graph	Column: (2/1)	5	2	37	Lock	Annly
Surface	🔒 Rail	6	2	32	Data Type Numeric V	, and the second
Measure	Ime	7	3	78	Modeling Turne Maninet	Help
Control		8	3	91	Nodeling Type Nominal V	
DOE		9	3	85	Format Rest Vidth 10	
Tables		10	4	92	best · Width to	
SAS		11	4	100	Use thousands separator (,)	
		12	4	96		
	 Rows 	13	5	49	Column Properties *	
	All rows 1	8 14	5	51		
	Selected	0 15	5	50		
	Excluded	16	6	80		
	Labelled	17	6	85		
		18	6	83		
	3 💞 P	references	Exa	mine and se	et system preferences.	

Inference for Unstructured Multisample Studies (Ch. 7.1 and 7.4)

Will Landau

The one-way ANOVA model

Residuals and fitted values

Variance estimation

Standardized residuals

Analysis of Variance								
Sum of Source DE Squares Mean Square E Batio								
Model	5	9310.5000	1862.10	115.1814				
Error C. Total	12 17	194.0000 9504.5000	16.17	Prob > F <.0001*				

- 5. With K = 115.18 > 3.11, we reject H_0 and conclude H_a .
- 6. There is enough evidence to conclude that the true mean excess travel time of waves along the rails depends on the rail.

Inference for Unstructured Multisample Studies (Ch. 7.1 and 7.4)

Will Landau

The one-way ANOVA model

Residuals and fitted values

Variance estimation

Standardized residuals