More on Inference for Two-Sample Data

Will Landau

Iowa State University

Apr 9, 2013

More on Inference for Two-Sample Data

Will Landau

Two-Sample Inference: Large Samples

Outline

Two-Sample Inference: Large Samples

Two-Sample Inference: Small samples

More on Inference for Two-Sample Data

Will Landau

Two-Sample Inference: Large Samples

Two-sample inference

- Comparing the means of two distinct populations with respect to the same measurement.
- Examples:
 - SAT scores of high school A vs. high school B.
 - Severity of a disease in women vs. in men.
 - ► Heights of New Zealanders vs. heights of Ethiopians.
 - Coefficients of friction after wear of sandpaper A vs. sandpaper B.
- Notation:

Sample	1	2
Sample size	n_1	<i>n</i> ₂
True mean	μ_1	μ_2
Sample mean	\overline{x}_1	\overline{x}_2
True variance	σ_1^2	σ_2^2
Sample variance	s_1^2	s_{2}^{2}

More on Inference for Two-Sample Data

Will Landau

Two-Sample Inference: Large Samples

$n_1 \ge 25$ and $n_2 \ge 25$, variances known

- We want to test $H_0: \mu_1 \mu_2 = \#$ with some alternative hypothesis
- If σ_1^2 and σ_2^2 are known, use the test statistic:

$$K = \frac{(\bar{x}_1 - \bar{x}_2) - \#}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

which has a N(0,1) distribution if:

- ► H₀ is true.
- The sample 1 points are iid with mean μ₁ and variance σ₁², the sample 2 points are iid with mean μ₂ and variance σ₂², and the two samples are independent.
- The confidence intervals (2-sided, 1-sided upper, and 1-sided lower, respectively) for $\mu_1 \mu_2$ are:

$$\begin{pmatrix} (\overline{x_{1}} - \overline{x}_{2}) - z_{1-\alpha/2} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}, \ (\overline{x_{1}} - \overline{x}_{2}) + z_{1-\alpha/2} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}} \end{pmatrix} \\ \begin{pmatrix} -\infty, \ (\overline{x_{1}} - \overline{x}_{2}) + z_{1-\alpha} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}} \end{pmatrix} \\ \begin{pmatrix} (\overline{x_{1}} - \overline{x}_{2}) - z_{1-\alpha} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}, \ \infty \end{pmatrix} \end{cases}$$

© Will Landau

More on Inference for Two-Sample Data

Will Landau

Two-Sample Inference: Large Samples

$n_1 \ge 25$ and $n_2 \ge 25$, variances UNknown

• If σ_1^2 and σ_2^2 are UNknown, use the test statistic:

$$K = \frac{(\bar{x}_1 - \bar{x}_2) - \#}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

• and confidence intervals for $\mu_1 - \mu_2$:

$$\begin{pmatrix} (\overline{x_{1}} - \overline{x}_{2}) - z_{1-\alpha/2}\sqrt{\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}}, \ (\overline{x_{1}} - \overline{x}_{2}) + z_{1-\alpha/2}\sqrt{\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}} \end{pmatrix} \\ \begin{pmatrix} -\infty, \ (\overline{x_{1}} - \overline{x}_{2}) + z_{1-\alpha}\sqrt{\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}} \end{pmatrix} \\ \begin{pmatrix} (\overline{x_{1}} - \overline{x}_{2}) - z_{1-\alpha}\sqrt{\frac{s_{1}^{2}}{n_{1}} + \frac{s_{2}^{2}}{n_{2}}}, \ \infty \end{pmatrix} \end{pmatrix}$$

More on Inference for Two-Sample Data

Will Landau

Two-Sample Inference: Large Samples

- A company research effort involved finding a workable geometry for molded pieces of a solid.
- One comparison made was between the weight (in grams) of molded pieces of a particular geometry that could be poured into a standard container, and the weight of irregularly shaped pieces (obtained through crushing), that could be poured into the same container.
- ▶ n₁ = 24 crushed pieces and n₂ = 24 molded pieces were made and weighed.
- µ₁ is the true mean packing weight of the crushed pieces, and µ₂ is the true mean packing weight of the molded pieces.
- I want to formally test the claim that the crushed weights are greater than the molded weights.

More on Inference for Two-Sample Data

Will Landau

Two-Sample Inference: Large Samples

Molded		Crushed
7.9	11	
4.5, 3.6, 1.2	12	
9.8, 8.9, 7.9, 7.1, 6.1, 5.7, 5.1	12	
2.3, 1.3, 0.0	13	
8.0, 7.0, 6.5, 6.3, 6.2	13	
2.2, 0.1	14	
	14	
2.1, 1.2, 0.2	15	
	15	
	16	1.8
	16	5.8, 9.6
	17	1.3, 2.0, 2.4, 3.3, 3.4, 3.7
	17	6.6, 9.8
	18	0.2, 0.9, 3.3, 3.8, 4.9
	18	5.5, 6.5, 7.1, 7.3, 9.1, 9.8
	19	0.0, 1.0
	19	

More on Inference for Two-Sample Data

Will Landau

Two-Sample Inference: Large Samples

1.
$$H_0: \mu_1 - \mu_2 = 0, \ H_a: \mu_1 - \mu_2 > 0.$$

2. $\alpha = 0.05$

3. The test statistic is:

$$\mathcal{K} = \frac{(\overline{x}_1 - \overline{x}_2) - 0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

• n_1 and n_2 are each < 25, but each sample is normally distributed enough to flex the " $n \ge 25$ " rule and allow $n_1 = n_2 = 24$.

Hence, it is enough to assume:

- The crushed weights are iid with mean μ_1 and variance σ_1^2 .
- The molded weights are iid with mean μ_2 and variance σ_2^2 .
- The crushed weights are independent of the molded weights.
- Under these assumptions, K ~ N(0,1) under the null hypothesis.

More on Inference for Two-Sample Data

Will Landau

Two-Sample Inference: Large Samples

4. The moment of truth:

$$\begin{split} \mathcal{K} &= \frac{\left(\overline{x}_1 - \overline{x}_2\right) - 0}{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} = \frac{179.55 - 132.97 - 0}{\sqrt{\frac{(8.34)^2}{24} + \frac{(9.31)^2}{24}}} = 18.3\\ \text{p-value} &= P(Z > \mathcal{K}) = 1 - \Phi(\mathcal{K}) = 1 - \Phi(18.3)\\ &= 4 \times 10^{-75} \end{split}$$

5. With a p-value of $4 \times 10^{-75} < \alpha$, we reject H_0 in favor of H_a .

6. There is overwhelming evidence that more crushed solid material by weight can be poured into the container than molded solid material.

More on Inference for Two-Sample Data

Will Landau

Two-Sample Inference: Large Samples

► The analogous lower 95% confidence interval for µ₁ - µ₂ is:

$$\begin{pmatrix} (\overline{x_1} - \overline{x}_2) - z_{1-\alpha} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}, \ \infty \end{pmatrix}$$

$$= \begin{pmatrix} (179.55 - 132.97) - z_{0.95} \sqrt{\frac{(8.34)^2}{24} + \frac{(9.31)^2}{24}}, \ \infty \end{pmatrix}$$

$$= (46.58 - 1.64 \cdot 2.55, \ \infty)$$

$$= (42.40, \ \infty)$$

 We're 95% confident that the true mean packing weight of crushed solids is at least 42.40 g greater than that of the molded solids. More on Inference for Two-Sample Data

Will Landau

Two-Sample Inference: Large Samples

Your turn: anchor bolts

An experiment carried out to study various characteristics of anchor bolts resulted in 78 observations on shear strength (kip) of 3/8-in. diameter bolts and 88 observations on strength of 1/2-in. diameter bolts.

Variable	N	Mean	Median	TrMean	StDev	SEMean
diam 3/8	78	4.250	4.230	4.238	1.300	0.147
Variable diam 3/8	Min 1.634	Max 7.327	Q1 3.389	Q3 5.075		
Variable	N	Mean	Median	TrMean	StDev	SEMean
diam 1/2	88	7.140	7.113	7.150	1.680	0.179
Variable diam 1/2	Min	Max	Q1	Q3 8.447		

- Let Sample 1 be the 1/2 in diameter bolts and Sample 2 be the 3/8 in diameter bolts.
- Using a significance level of $\alpha = 0.01$, find out if the 1/2 in bolts are more than 2 kip stronger (in shear strength) than the 3/8 in bolts.
- Calculate and interpret the appropriate 99% confidence interval to support the analysis.

More on Inference for Two-Sample Data

Will Landau

Two-Sample Inference: Large Samples

Answers: anchor bolts

•
$$n_1 = 88, n_2 = 78.$$

• $\overline{x}_1 = 7.14, \overline{x}_2 = 4.25$
• $s_1 = 1.68, s_2 = 1.3$

1.
$$H_0: \mu_1 - \mu_2 = 2, \ H_a: \mu_1 - \mu_2 > 2$$

2. $\alpha = 0.01$

3. The test statistic is:

$$K = rac{(\overline{x}_1 - \overline{x}_2) - 2}{\sqrt{rac{s_1^2}{n_1} + rac{s_2^2}{n_2}}}$$

Assume:

► H₀ is true.

- Sample 1 points are drawn from iid (μ₁, σ₁²) distributions.
- Sample 2 points are drawn from iid (μ₂, σ₂²) distributions.
- Samples 1 and 2 are independent.
- ▶ Then, *K* ~ *N*(0,1)

Will Landau

Two-Sample Inference: Large Samples

Answers: anchor bolts

4. The moment of truth:

$$\begin{split} \mathcal{K} &= \frac{(\overline{x}_1 - \overline{x}_2) - 2)}{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} = \frac{(7.14 - 4.25) - 2}{\sqrt{\frac{(1.68)^2}{88} + \frac{(1.3)^2}{78}}} = 3.84\\ \text{p-value} &= P(Z > \mathcal{K}) = 1 - P(Z \le \mathcal{K}) = 1 - P(Z \le 3.84)\\ &= 1 - \Phi(3.84) \approx 0 \end{split}$$

- 5. With a p-value $\approx 0 < \alpha = 0.01$, we reject H_0 in favor of H_a .
- 6. There is overwhelming evidence that the 1/2 in anchor bolts are more than 2 kip stronger in shear strength than the 3/8 in bolts.

Will Landau

Two-Sample Inference: Large Samples

Answers: anchor bolts

• I use a lower confidence interval for $\mu_1 - \mu_2$:

$$\begin{pmatrix} (\overline{x_1} - \overline{x}_2) - z_{1-\alpha} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}, \infty \end{pmatrix}$$

$$= \begin{pmatrix} (7.14 - 4.25) - z_{0.99} \cdot \sqrt{\frac{1.68^2}{88} + \frac{1.3^2}{78}}, \infty \end{pmatrix}$$

$$= (2.89 - 2.33 \cdot 0.232, \infty)$$

$$= (2.35, \infty)$$

We're 99% confident that the true mean shear strength of the 1/2 in anchor bolts is at least 2.35 kip more than the true mean shear strength of the 3/8 in anchor bolts. More on Inference for Two-Sample Data

Will Landau

Two-Sample Inference: Large Samples

Outline

Two-Sample Inference: Large Samples

Two-Sample Inference: Small samples

More on Inference for Two-Sample Data

Will Landau

Two-Sample Inference: Large Samples

Small samples and $\sigma_1^2 \approx \sigma_2^2$

If σ₁² ≈ σ₂², then we can use the pooled sample variance,

$$s_p^2 = rac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

A test statistic to test H₀ : µ₁ − µ₂ = # against some alternative is:

$$K = \frac{\overline{x}_1 - \overline{x}_2 - \#}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

• $K \sim t_{n_1+n_2-2}$ assuming:

- ► H₀ is true.
- The sample 1 points are iid N(μ₁, σ₁²), the sample 2 points are iid N(μ₂, σ₂²), and the sample 1 points are independent of the sample 2 points.

More on Inference for Two-Sample Data

Will Landau

Two-Sample Inference: Large Samples

Small samples and $\sigma_1^2 \approx \sigma_2^2$

1 − α confidence intervals (2-sided, 1-sided upper, and 1-sided lower, respectively) for µ₁ − µ₂ under these assumptions are of the form:

$$\begin{pmatrix} (\overline{x_{1}} - \overline{x}_{2}) - t_{\nu, 1-\alpha/2} s_{p} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}, \ (\overline{x_{1}} - \overline{x}_{2}) + t_{\nu, 1-\alpha/2} s_{p} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}} \end{pmatrix} \\ \begin{pmatrix} -\infty, \ (\overline{x_{1}} - \overline{x}_{2}) + t_{\nu, 1-\alpha} s_{p} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}} \end{pmatrix} \\ \begin{pmatrix} (\overline{x_{1}} - \overline{x}_{2}) - t_{\nu, 1-\alpha} s_{p} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}, \ \infty \end{pmatrix} \end{cases}$$

where $\nu = n_1 + n_2 - 2$.

More on Inference for Two-Sample Data

Will Landau

Two-Sample Inference: Large Samples

The data of W. Armstrong on spring lifetimes (appearing in the book by Cox and Oakes) not only concern spring longevity at a 950 N/mm2 stress level but also longevity at a 900 N/mm2 stress level.

Spring Lifetimes under Two Different Levels of Stress (10³ cycles)

950 N/mm ² Stress	900 N/mm ² Stress
225, 171, 198, 189, 189	216, 162, 153, 216, 225
135, 162, 135, 117, 162	216, 306, 225, 243, 189

- Let sample 1 be the 900 N/mm² stress group and sample 2 be the 950 N/mm² stress group.
- $\overline{x}_1 = 215.1, \overline{x}_2 = 168.3.$
- Let's do a hypothesis test to see if the sample 1 springs lasted significantly longer than the sample 2 springs.

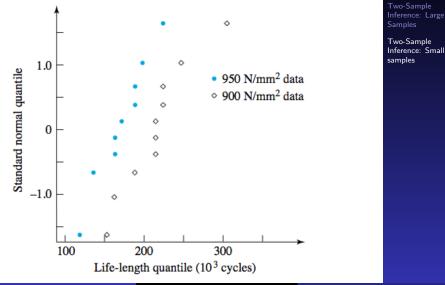
© Will Landau

More on Inference for Two-Sample Data

Will Landau

Two-Sample Inference: Large Samples

First, since the samples are small, we need each sample to be roughly normally distributed.



© Will Landau

Iowa State University

More on Inference

for Two-Sample Data

Will Landau

1.
$$H_0: \mu_1 - \mu_2 = 0, \ H_a: \mu_1 - \mu_2 > 0.$$

2. $\alpha = 0.05$

3. The test statistic is:

$$K = \frac{(\overline{x}_1 - \overline{x}_2) - 0}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

Assume:

- ► H₀ is true.
- The sample 1 spring lifetimes are iid $N(\mu_1, \sigma_1^2)$
- The sample 2 spring lifetimes are iid $N(\mu_2, \sigma_2^2)$
- The sample 1 spring lifetimes are independent of those of sample 2.
- Under these assumptions,

$$K \sim t_{n_1+n_2-2} = t_{10+10-2} = t_{18}.$$

• Reject H_0 if $K > t_{18, 1-\alpha}$

More on Inference for Two-Sample Data

Will Landau

Two-Sample Inference: Large Samples

$$s_{1} = \sqrt{\frac{1}{n_{1} - 1} \sum_{i} (x_{1,i} - \overline{x}_{1})^{2}}$$

$$= \sqrt{\frac{1}{9} (225 - 215.1)^{2} + (171 - 215.1)^{2} + \dots + (162 - 215.1)^{2}} = 42.9$$

$$s_{2} = \sqrt{\frac{1}{n_{2} - 1} \sum_{i} (x_{2,i} - \overline{x}_{2})^{2}}$$

$$= \sqrt{\frac{1}{9} (225 - 168.3)^{2} + (171 - 168.3)^{2} + \dots + (162 - 168.3)^{2}} = 33.1$$

$$s_{p} = \sqrt{\frac{(10 - 1)42.9^{2} + (10 - 1)33.1^{2}}{10 + 10 - 2}} = 38.3$$

More on Inference for Two-Sample Data

Will Landau

Two-Sample nference: Large Samples

4. The moment of truth:

$$\mathcal{K} = \frac{(\overline{x}_1 - \overline{x}_2) - 0}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = \frac{215.1 - 168.3 - 0}{38.3 \cdot \sqrt{\frac{1}{10} + \frac{1}{10}}} = 2.7$$
$$t_{18, \ 1-\alpha} = t_{18, \ 1-0.05} = t_{18, \ 0.95}$$
$$= 1.73$$

5. With
$$K = 2.7 > 1.73 = t_{18,0.95}$$
, we reject H_0 in favor of H_a .

6. There is enough evidence to conclude that springs last longer if subjected to 900 N/mm^2 of stress than if subjected to 950 N/mm^2 of stress.

More on Inference for Two-Sample Data

Will Landau

Two-Sample Inference: Large Samples

▶ A 95%, 2-sided confidence interval for the difference in lifetimes is:

$$\left((\overline{x_1}-\overline{x}_2)-t_{\nu,\ 1-\alpha/2}s_p\sqrt{\frac{1}{n_1}+\frac{1}{n_2}},\ (\overline{x_1}-\overline{x}_2)+t_{\nu,\ 1-\alpha/2}s_p\sqrt{\frac{1}{n_1}+\frac{1}{n_2}}\right)$$

Using $t_{\nu, 1-\alpha/2} = t_{18,1-0.05/2} = t_{18, 0.975} = 2.1$:

$$\left((215.1 - 168.3) - 2.1 \cdot 38.3\sqrt{\frac{1}{10} + \frac{1}{10}}, (215.1 - 168.3) + 2.1 \cdot 38.3\sqrt{\frac{1}{10} + \frac{1}{10}}\right)$$
$$= (10.8, 82.8)$$

▶ We are 95% confident that the springs subjected to 900 N/mm² of stress last between 10.8 × 10³ and 82.8 × 10³ cycles longer than the springs subjected to 950 N/mm² of stress. Will Landau

Two-Sample Inference: Large Samples

Your turn: stopping distances

- Suppose µ₁ and µ₂ are true mean stopping distances (in meters) at 50 mph for cars of a certain type equipped with two different types of breaking systems.
- ▶ Suppose $n_1 = n_2 = 6$, $\overline{x}_1 = 115.7$, $\overline{x}_2 = 129.3$, $s_1 = 5.08$, $s_2 = 5.38$.
- ▶ Use significance level 0.01 to test H₀: µ₁ − µ₂ = −10 vs. H_a: µ₁ − µ₂ < −10.
- Construct a 2-sided 99% confidence interval for the true difference in stopping distances.

More on Inference for Two-Sample Data

Will Landau

Two-Sample Inference: Large Samples

1.
$$H_0: \mu_1 - \mu_2 = 0, \ H_a: \mu_1 - \mu_2 < -10.$$

2.
$$\alpha = 0.01$$

3. The test statistic is:

$$K = \frac{\left(\overline{x}_1 - \overline{x}_2\right) - \left(-10\right)}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$

Assume:

- ► H₀ is true.
- The sample 1 stopping distances are iid N(μ₁, σ₁²)
- The sample 2 stopping distances are iid N(μ₂, σ₂²)
- The sample 1 stopping distances are independent of those of sample 2.
- Under these assumptions, $K \sim t_{n_1+n_2-2} = t_{6+6-2} = t_{10}$.
- Reject H_0 if $K < t_{10, \alpha}$

More on Inference for Two-Sample Data

Will Landau

Two-Sample Inference: Large Samples

▶
$$s_1 = 5.08$$
, $s_2 = 5.38$.

$$s_{p} = \sqrt{\frac{(n_{1} - 1)s_{1}^{2} + (n_{2} - 1)s_{2}^{2}}{n_{1} + n_{2} - 2}}$$
$$= \sqrt{\frac{(6 - 1)(5.08)^{2} + (6 - 1)(5.38)^{2}}{6 + 6 - 2}}$$
$$= 5.23$$

More on Inference for Two-Sample Data

Will Landau

Fwo-Sample nference: Large Samples

4. The moment of truth:

$$\mathcal{K} = \frac{(\overline{x}_1 - \overline{x}_2) - (-10)}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} = \frac{115.7 - 129.3 + 10}{5.23 \cdot \sqrt{\frac{1}{6} + \frac{1}{6}}} = -1.19$$
$$t_{10, \ 1-\alpha} = t_{10, \ 0.99} = -2.76$$

5. With
$$K = -1.19 \not< -2.76 = t_{10,0.99}$$
, we reject H_0 in favor of H_a .

6. There is not enough evidence to conclude that the stopping distances of breaking system 1 are less than those of breaking system 2 by over 10 m.

More on Inference for Two-Sample Data

Will Landau

Two-Sample Inference: Large Samples

A 99%, 2-sided confidence interval for the difference in breaking distances is:

$$\left((\overline{x_{1}}-\overline{x}_{2})-t_{\nu,\ 1-\alpha/2}s_{p}\sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}},\ (\overline{x_{1}}-\overline{x}_{2})+t_{\nu,\ 1-\alpha/2}s_{p}\sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}\right)$$

Using $t_{\nu, 1-\alpha/2} = t_{10,1-0.01/2} = t_{10, 0.995} = 3.17$:

$$\left((115.7 - 129.3) - 3.17 \cdot 5.23\sqrt{\frac{1}{6} + \frac{1}{6}}, (115.7 - 129.3) + 3.17 \cdot 5.23\sqrt{\frac{1}{6} + \frac{1}{6}}\right)$$
$$= (-23.17, -4.03)$$

We are 99% confident that the true mean stopping distance of braking system 1 is anywhere from 23.17 m to 4.03 m less than that of breaking system 2. More on Inference for Two-Sample Data

Will Landau

Two-Sample Inference: Large Samples

What if $\sigma_1^2 \neq \sigma_2^2$?

If σ₁² ≠ σ₂², the distribution of the test statistic has an approximate t distribution with degrees of freedom estimated by the following special case of the Cochran-Satterthwaite approximation for linear combinations of mean squares:

$$\widehat{\nu} = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{s_1^4}{(n_1 - 1)n_1^2} + \frac{s_2^4}{(n_2 - 1)n_2^2}}$$

• The test statistic for testing $H_0: \mu_1 - \mu_2 = \#$ vs. some H_a is:

$$\mathcal{K} = \frac{\overline{x}_1 - \overline{x}_2 - \#}{\sqrt{\frac{s_2^2}{n_2} + \frac{s_1^2}{n_1}}}$$

which has a $t_{\widehat{\nu}}$ distribution under the assumptions that:

- ► H₀ is true.
- The sample 1 observations are iid N(μ₁, σ₁²) and the sample 2 observations are iid N(μ₂, σ₂²)

© Will Landau

Iowa State University

More on Inference for Two-Sample Data

Will Landau

Two-Sample Inference: Large Samples

What if $\sigma_1^2 \neq \sigma_2^2$?

• Under these assumptions, the $1 - \alpha$ confidence intervals for $\mu_1 - \mu_2$ become:

$$\begin{pmatrix} (\overline{x_1} - \overline{x}_2) - t_{\hat{\nu}, \ 1 - \alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}, \ (\overline{x_1} - \overline{x}_2) + t_{\hat{\nu}, \ 1 - \alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \end{pmatrix} \\ \begin{pmatrix} -\infty, \ (\overline{x_1} - \overline{x}_2) + t_{\hat{\nu}, \ 1 - \alpha} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \\ \\ (\overline{x_1} - \overline{x}_2) - t_{\hat{\nu}, \ 1 - \alpha} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}, \ \infty \end{pmatrix} \end{cases}$$

More on Inference for Two-Sample Data

Will Landau

Two-Sample nference: Large Samples

- In the springs example, σ₁² probably doesn't equal σ₂² because s₁ = 57.9 and s₂ = 33.1.
- I'll redo the hypothesis test and the confidence interval using:

$$\widehat{\nu} = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{s_1^4}{(n_1 - 1)n_1^2} + \frac{s_2^4}{(n_2 - 1)n_2^2}} = \frac{\left(\frac{57.9^2}{10} + \frac{33.1^2}{10}\right)^2}{\frac{57.9^4}{(10 - 1)10^2} + \frac{33.1^4}{(10 - 1)10^2}} = 14.3$$

More on Inference for Two-Sample Data

Will Landau

Two-Sample Inference: Large Samples

1.
$$H_0: \mu_1 - \mu_2 = 0, \ H_a: \mu_1 - \mu_2 > 0.$$

2.
$$\alpha = 0.05$$

3. The test statistic is:

$$K = rac{(\overline{x}_1 - \overline{x}_2) - 0}{\sqrt{rac{s_1^2}{n_1} + rac{s_2^2}{n_2}}}$$

Assume:

- ► H₀ is true.
- The sample 1 spring lifetimes are $N(\mu_1, \sigma_1^2)$
- The sample 2 spring lifetimes are $N(\mu_2, \sigma_2^2)$
- The sample 1 spring lifetimes are independent of those of sample 2.
- Under these assumptions, $K \sim t_{\hat{\nu}} = t_{14.3}$.
- Reject H_0 if $K > t_{14.3, 1-\alpha}$

More on Inference for Two-Sample Data

Will Landau

Two-Sample Inference: Large Samples

4. The moment of truth:

$$\begin{aligned} \mathcal{K} &= \frac{\left(\overline{x}_1 - \overline{x}_2\right) - 0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{215.1 - 168.3 - 0}{\sqrt{\frac{57.9^2}{10} + \frac{33.1^2}{10}}} = 2.22\\ t_{14.3,\ 1-\alpha} &= t_{14.3,\ 1-0.05} = t_{14.3,\ 0.95}\\ &= 1.76 \quad \text{(Take } \nu = 14 \text{ if you're using the t table)} \end{aligned}$$

- 5. With $K = 2.22 > 1.76 = t_{14.3,0.95}$, we reject H_0 in favor of H_a .
- 6. There is still enough evidence to conclude that springs last longer if subjected to 900 N/mm^2 of stress than if subjected to 950 N/mm^2 of stress.

More on Inference for Two-Sample Data

Will Landau

Two-Sample Inference: Large Samples

▶ A 95%, 2-sided confidence interval for the difference in lifetimes is:

$$\left((\overline{x_1} - \overline{x}_2) - t_{\widehat{\nu}, \ 1 - \alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}, \ (\overline{x_1} - \overline{x}_2) + t_{\widehat{\nu}, \ 1 - \alpha/2} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}\right)$$

Using $t_{\hat{\nu}, 1-\alpha/2} = t_{14.3, 1-0.05/2} = t_{14.3, 0.975} = 2.14$:

$$\left((215.1 - 168.3) - 2.14 \cdot \sqrt{\frac{57.9^2}{10} + \frac{33.1^2}{10}}, \\ (215.1 - 168.3) + 2.14 \cdot \sqrt{\frac{57.9^2}{10} + \frac{33.1^2}{10}} \right)$$
$$= (1.67, 91.9)$$

We are 95% confident that the springs subjected to 900 N/mm² of stress last between 1.67 × 10³ and 91.1 × 10³ cycles longer than the springs subjected to 950 N/mm² of stress.

© Will Landau

More on Inference for Two-Sample Data

Will Landau

Two-Sample Inference: Large Samples

Your turn: fabrics

- ▶ The void volume within a textile fabric affects comfort, flammability, and insulation properties. Permeability $(cm^3/cm^2/s)$ of a fabric refers to the accessibility of void space to the flow of a gas or liquid.
- Consider the following data on two different types of plain-weave fabric:

Fabric Type	Sample Size	Sample Mean	Sample Standard Deviation
Cotton	10	51.71	.79
Triacetate	10	136.14	3.59

- Let Sample 1 be the triacetate fabric and Sample 2 be the cotton fabric.
- Using $\alpha = 0.05$, attempt to verify the claim that triacetate fabrics are more permeable than the cotton fabrics on average.
- Construct and interpret a two-sided 95% confidence interval for the true difference in mean permeability.

More on Inference for Two-Sample Data

Will Landau

Two-Sample Inference: Large Samples

Answers: fabrics

$$\widehat{\nu} = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{s_1^4}{(n_1 - 1)n_1^2} + \frac{s_2^4}{(n_2 - 1)n_2^2}} = \frac{\left(\frac{3.59^2}{10} + \frac{0.79^2}{10}\right)^2}{\frac{3.59^4}{(10 - 1)10^2} + \frac{0.79^4}{(10 - 1)10^2}} = 9.87$$

► If you're using the t table, round down to v = 9 to avoid unneccessary false positives. More on Inference for Two-Sample Data

Will Landau

Two-Sample Inference: Large Samples

Answers fabrics

1.
$$H_0: \mu_1 - \mu_2 = 0, \ H_a: \mu_1 - \mu_2 > 0.$$

2.
$$\alpha = 0.05$$

3. The test statistic is:

$$K = rac{(\overline{x}_1 - \overline{x}_2) - 0}{\sqrt{rac{s_1^2}{n_1} + rac{s_2^2}{n_2}}}$$

Assume:

- ► H₀ is true.
- The triacetate permeabilities are $N(\mu_1, \sigma_1^2)$
- The cotton permeabilities are $N(\mu_2, \sigma_2^2)$
- The triacetate permeabilities are independent of the cotton permeabilities.
- Under these assumptions, $K \sim t_{\hat{\nu}} = t_{9.87}$.
- Reject H_0 if $K > t_{9.87, 1-\alpha}$

More on Inference for Two-Sample Data

Will Landau

Two-Sample Inference: Large Samples

Answers fabrics

4. The moment of truth:

$$\mathcal{K} = \frac{(\overline{x}_1 - \overline{x}_2) - 0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{136.14 - 51.71 - 0}{\sqrt{\frac{3.59^2}{10} + \frac{0.79^2}{10}}} = 72.63$$
$$t_{9.87, \ 1-\alpha} \approx t_{9,1-\alpha} = t_{9,\ 0.95} = 1.83$$

- 5. With $K = 72.63 > 1.83 = t_{9,0.95}$, we reject H_0 in favor of H_a .
- 6. There is overwhelming evidence to conclude that the triacetate fabrics are more permeable than the cotton fabrics.

More on Inference for Two-Sample Data

Will Landau

Two-Sample Inference: Large Samples

Answers fabrics

With t_{ν̂,1-α/2} ≈ t_{9,0.975} = 2.26, a 95%, 2-sided confidence interval for the difference in lifetimes is:

$$\begin{split} &\left((\overline{x_1} - \overline{x}_2) - t_{\widehat{\nu}, \ 1 - \alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}, \ (\overline{x_1} - \overline{x}_2) + t_{\widehat{\nu}, \ 1 - \alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \\ &\left((136.14 - 51.71) - 2.26 \cdot \sqrt{\frac{3.59^2}{10} + \frac{0.79^2}{10}}, \\ &(136.14 - 51.71) + 2.26 \cdot \sqrt{\frac{3.59^2}{10} + \frac{0.79^2}{10}} \right) \\ &= (81.80, \ 87.06) \end{split}$$

We are 95% confident that the permeability of the triacetate fabric exceeds that of the cotton fabric by anywhere between 81.80 cm³/cm²/s and 87.06 cm³/cm³/s. More on Inference for Two-Sample Data

Will Landau

Two-Sample Inference: Large Samples