Random Intervals and Confidence Intervals (Ch. 6.1)

Random Intervals

Will Landau

Iowa State University
Mar 26, 2013

Outline

Random Intervals

 and ConfidenceIntervals (Ch. 6.1)

Will Landau

Motivation
Random Intervals
Motivation

Random Intervals

Confidence Intervals ($n \geq 25, \sigma$ known)

Statistical inference

Random Intervals
and Confidence

- Statistical inference: using data from the sample to draw formal conclusions about the population
- Point estimation (confidence intervals): estimating population parameters and specifying the degree of precision of the estimate.
- Hypothesis testing: testing the validity of statements about the population that are framed in terms of parameters.

Motivation for confidence intervals

- We want information on a population. For example:
- True mean breaking strength of a kind of wire rope.
- True mean fill weight of food jars.
- True mean instrumental drift of a kind of scale.
- Average number of cycles to failure of a kind of spring.
- We can use point estimates:
- For example: if we measure breaking strengths (in tons) of 6 wire ropes as $5,3,7,3,10$, and 1 , we might estimate the true mean breaking strength $\mu \approx \bar{x}=\frac{5+3+7+3+10+1}{6}=4.83$ tons.
- Or, we can use interval estimates:
- μ is likely to be inside the interval $(4.83-2,4.83+2)=(2.83,6.83)$.
- We are confident that the true mean breaking strength, μ, is somewhere in $(2.83,6.83)$. But how confident can we be?

Outline

Random Intervals and Confidence
Intervals (Ch. 6.1)

Will Landau

Motivation
Random Intervals
Confidence
Intervals
($n \geq 25, \sigma$ known)

Random Intervals

Confidence Intervals ($n \geq 25, \sigma$ known)

Random intervals

Random Intervals

- A random interval is an interval on the real line with a random variable at one or both of the endpoints.
- Examples:

Random Intervals
Confidence
Intervals
($n \geq 25, \sigma$

- $(Z-2, Z+2), Z \sim N(0,1)$
- (Z, ∞)
- $(-\infty, X), X \sim N(-2,9)$
- $\left(T-s \cdot t_{7,0.975}, T+s \cdot t_{7,0.975}\right), T \sim t_{7}$
- $\left(X-\sigma \cdot z_{1-\alpha}, \infty\right), X \sim N\left(5, \sigma^{2}\right), 0<\alpha<1$.
- Random intervals take into account the uncertainty in the measurement of a true mean, μ.

Example: instrumental drift

Random Intervals

- Let Z be a measure of instrumental drift of a random voltmeter that comes out of a certain factory. Say $Z \sim N(0,1)$.
- Define a random interval:

$$
(Z-2, Z+2)
$$

- What is the probability that -1 is inside the interval?
- Equivalent to asking how likely it is that the drift of the next instrument is within 2 units of -1 .

Example: instrumental drift

Random Intervals and Confidence Intervals (Ch. 6.1)

Will Landau

Motivation

Random Intervals

$$
\begin{aligned}
P(-1 \text { in }(Z-2, Z+2)) & =P(Z-2<-1<Z+2) \\
& =P(Z-1<0<Z+3) \\
& =P(-1<-Z<3) \\
& =P(-3<Z<1) \\
& =P(Z \leq 1)-P(Z \leq-3) \\
& =\Phi(1)-\Phi(-3) \\
& =0.84
\end{aligned}
$$

Confidence
Intervals
($n \geq 25, \sigma$
known)

Example: instrumental drift: the range of Z values for which -1 is in $(Z-2, Z+2)$

Random Intervals and Confidence
Intervals (Ch. 6.1)

Will Landau

pdf of Z

Motivation

Random Intervals

Confidence
Intervals
($n \geq 25, \sigma$
known)

Your turn: random intervals

Motivation

Random Intervals
Confidence
Calculate:
Intervals
($n \geq 25, \sigma$
known)

1. $P(2$ in $(X-1, X+1)), X \sim N(2,4)$
2. $P(6.6$ in $(X-2, X+1)), X \sim N(7,2)$

Here, $0<\alpha<1$.

Answers: random intervals

Will Landau

1. $X \sim N(2,4)$

$$
\begin{aligned}
P(2 \in(X-1, X+1)) & =P(X-1<2<X+1) \\
& =P(-1<2-X<1) \\
& =P(-1<X-2<1) \\
& =P\left(\frac{-1}{2}<\frac{X-2}{2}<\frac{1}{2}\right) \\
& =P(-0.5<Z<0.5) \\
& =\Phi(0.5)-\Phi(-0.5) \\
& =0.69-0.31 \\
& =0.38
\end{aligned}
$$

Answers: random intervals

2. $X \sim N(7,2)$

$$
\begin{aligned}
P(6.6 \in(X-2, X+1)) & =P(X-2<6.6<X+1) \\
& =P(-2<6.6-X<1) \\
& =P(-1<X-6.6<2) \\
& =P(-1.4<X-7<1.6) \\
& =P\left(\frac{-1.4}{\sqrt{2}}<\frac{X-7}{\sqrt{2}}<\frac{1.6}{\sqrt{2}}\right) \\
& =P(-0.99<Z<1.13) \\
& =\Phi(1.13)-\Phi(-0.99) \\
& =0.87-0.16 \\
& =0.71
\end{aligned}
$$

More abstract random intervals

Random Intervals
and Confidence
Intervals (Ch. 6.1)
Will Landau

- $n \geq 25$
- mean μ
- variance σ^{2}
- The random interval, $\left(\bar{X}-z_{1-\alpha} \frac{\sigma}{\sqrt{n}}, \infty\right)$, is useful for estimating μ $(0<\alpha<1)$.
- The interval contains μ with probability $1-\alpha$.

$$
\begin{aligned}
P(\mu \in & \left.\left(\bar{X}-z_{1-\alpha} \frac{\sigma}{\sqrt{n}}, \infty\right)\right) \\
& =P\left(\bar{X}-z_{1-\alpha} \frac{\sigma}{\sqrt{n}}<\mu\right) \\
& =P\left(\bar{X}-\mu<z_{1-\alpha} \frac{\sigma}{\sqrt{n}}\right) \\
& =P\left(\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}<z_{1-\alpha}\right) \\
& \approx P\left(Z<z_{1-\alpha}\right) \quad(\text { Central Limit Theorem }) \\
& =\Phi\left(z_{1-\alpha}\right) \\
& \left.=1-\alpha \quad \text { (by the definition of } z_{p}\right)
\end{aligned}
$$

Motivation

Random Intervals
Confidence
Intervals
($n \geq 25, \sigma$
known)

Your turn: abstract random intervals

Motivation

Random Intervals
Confidence
Intervals
($n \geq 25, \sigma$
known)

Remember the Central Limit Theorem:

$$
\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \approx N(0,1)
$$

Answers: abstract random intervals

Random Intervals and Confidence
Intervals (Ch. 6.1)

Will Landau

$$
\begin{aligned}
P(\mu \in & \left.\left(-\infty, \bar{X}+z_{1-\alpha} \frac{\sigma}{\sqrt{n}}\right)\right) \\
& =P\left(\mu<\bar{X}+z_{1-\alpha} \frac{\sigma}{\sqrt{n}}\right) \\
& =P\left(-z_{1-\alpha} \frac{\sigma}{\sqrt{n}}<\bar{X}-\mu\right) \\
& =P\left(-z_{1-\alpha}<\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}\right) \\
& \left.\approx P\left(-z_{1-\alpha}<Z\right) \quad \text { (Central Limit Theorem }\right) \\
& =1-P\left(Z \leq-z_{1-\alpha}\right) \\
& =1-\Phi\left(-z_{1-\alpha}\right) \\
& =1-\Phi\left(z_{\alpha}\right) \quad \text { (by symmetry: } \mathrm{N}(0,1) \text { pdf) } \\
& \left.=1-\alpha \quad \text { (by the definition of } z_{p}\right)
\end{aligned}
$$

Motivation
Random Intervals
Confidence
Intervals
($n \geq 25, \sigma$
known)

Answers: abstract random intervals

Random Intervals and Confidence
Intervals (Ch. 6.1)
2.

$$
\begin{aligned}
P(\mu \in(X & \left.\left.-z_{1-\alpha / 2} \frac{\sigma}{\sqrt{n}}, \bar{X}+z_{1-\alpha / 2} \frac{\sigma}{\sqrt{n}}\right)\right) \\
& =P\left(\bar{X}-z_{1-\alpha / 2} \frac{\sigma}{\sqrt{n}}<\mu<\bar{X}+z_{1-\alpha / 2} \frac{\sigma}{\sqrt{n}}\right) \\
& =P\left(-z_{1-\alpha / 2} \cdot \frac{\sigma}{\sqrt{n}}<\mu-\bar{X}<z_{1-\alpha / 2} \frac{\sigma}{\sqrt{n}}\right) \\
& =P\left(-z_{1-\alpha / 2} \frac{\sigma}{\sqrt{n}}<\bar{X}-\mu<z_{1-\alpha / 2} \frac{\sigma}{\sqrt{n}}\right) \\
& =P\left(-z_{1-\alpha / 2}<\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}<z_{1-\alpha / 2}\right) \\
& \approx P\left(-z_{1-\alpha / 2}<Z<z_{1-\alpha / 2}\right) \quad \text { (Central Limit Theorem) } \\
& =\Phi\left(z_{1-\alpha / 2}\right)-\Phi\left(-z_{1-\alpha / 2}\right) \\
& \left.=\Phi\left(z_{1-\alpha / 2}\right)-\Phi\left(z_{\alpha / 2}\right) \quad \text { (by symmetry: } \mathrm{N}(0,1) \text { pdf }\right) \\
& =\left(1-\frac{\alpha}{2}\right)-\frac{\alpha}{2}=1-\alpha
\end{aligned}
$$

Will Landau

Motivation
Random Intervals
Confidence
Intervals
($n \geq 25, \sigma$
known)

Outline

Random Intervals and Confidence
Intervals (Ch. 6.1)

Will Landau

Motivation
Random Intervals

Confidence

Intervals
($n \geq 25, \sigma$
known)

Random Intervals

Confidence Intervals ($n \geq 25, \sigma$ known)

Confidence intervals

- A $1-\alpha$ confidence interval for an unknown parameter is the finite realization of a random interval that contains that parameter with probability $1-\alpha$.
- $1-\alpha$ is called the confidence level of the interval.
- Example: for observations $x_{1}, x_{2}, \ldots x_{n}$ from random

Motivation
Random Intervals
Confidence
Intervals
($n \geq 25, \sigma$
known) variables $X_{1}, X_{2}, \ldots, X_{n}$ iid with $E\left(X_{1}\right)=\mu$, $\operatorname{Var}\left(X_{1}\right)=\sigma^{2}$, a $1-\alpha$ confidence interval for μ is:

$$
\left(\bar{x}-z_{1-\alpha / 2} \frac{\sigma}{\sqrt{n}}, \bar{x}+z_{1-\alpha / 2} \frac{\sigma}{\sqrt{n}}\right)
$$

which is a random draw from the random interval:

$$
\left(\bar{X}-z_{1-\alpha / 2} \frac{\sigma}{\sqrt{n}}, \bar{X}+z_{1-\alpha / 2} \frac{\sigma}{\sqrt{n}}\right)
$$

- Two-sided $1-\alpha$ confidence interval:

$$
\left(\bar{x}-z_{1-\alpha / 2} \frac{\sigma}{\sqrt{n}}, \bar{x}+z_{1-\alpha / 2} \frac{\sigma}{\sqrt{n}}\right)
$$

Motivation
Random Intervals
Confidence
Intervals
($n \geq 25, \sigma$
known)

- One-sided $1-\alpha$ upper confidence interval:

$$
\left(-\infty, \bar{x}+z_{1-\alpha} \frac{\sigma}{\sqrt{n}}\right)
$$

- One-sided $1-\alpha$ lower confidence interval:

$$
\left(\bar{x}-z_{1-\alpha} \frac{\sigma}{\sqrt{n}}, \infty\right)
$$

Example: fill weight of jars

Random Intervals process with a known standard deviation of $\sigma=1.6 \mathrm{~g}$.

- We take a sample of $n=47$ jars and measure the sample mean weight $\bar{x}=138.2 \mathrm{~g}$.
- A two-sided 90% confidence interval $(\alpha=0.1)$ for the true mean weight μ is:

$$
\begin{aligned}
& \left(\bar{x}-z_{1-0.1 / 2} \frac{\sigma}{\sqrt{n}}, \bar{x}+z_{1-0.1 / 2} \frac{\sigma}{\sqrt{n}}\right) \\
& =\left(138.2-z_{0.95} \frac{1.6}{\sqrt{47}}, 138.2+z_{0.95} \frac{1.6}{\sqrt{47}}\right) \\
& =(138.2-1.64 \cdot 0.23,138.2+1.64 \cdot 0.23) \\
& =(137.82,138.58)
\end{aligned}
$$

I could have also written the interval as:

$$
138.2 \pm 0.38 \mathrm{~g}
$$

- We are 90% confident that the true mean fill weight is between 137.82 g and 138.58 g .
- If we took 100 more samples of 47 jars each, roughly 90 of those samples would yield confidence intervals containing the true mean fill weight.
- These methods of interpretation generalize to all confidence intervals.

Example: fill weight of jars.

- What if we just want to be sure that the true mean fill

Random Intervals and Confidence weight is high enough?

- Then, we would use a one-side lower 90% confidence interval:

$$
\begin{aligned}
& \left(\bar{x}-z_{1-\alpha} \frac{\sigma}{\sqrt{n}}, \infty\right) \\
& =\left(138.2-z_{1-\alpha} \frac{\sigma}{\sqrt{n}}, \infty\right) \\
& =\left(138.2-z_{0.9} \frac{1.6}{\sqrt{47}}, \infty\right) \\
& =(138.2-1.28 \cdot 0.23, \infty) \\
& =(137.91, \infty)
\end{aligned}
$$

- We're 90% confident that the true mean fill weight is above 137.91 g .

Your turn: car engines

- Consider a grinding process used to rebuild car engines, which involves grinding rod journals for engine crankshafts.
- Of interest is the deviation of the true mean rod journal diameter from the target diameter.
- Suppose the standard deviation of the individual differences from the target diameter is 0.7×10^{-4} in.
- 32 consecutive rod journals are ground, with a sample mean deviation of -0.16×10^{-4} in from the target diameter.
- Calculate and interpret a two-sided 95% confidence interval for the true mean deviation from the target diameter. Is there enough evidence that we're missing the target on average?

Answer: car engines

Random Intervals
and Confidence
Intervals (Ch. 6.1)
Will Landau

- $\alpha=1-0.95=0.05, n=32, \sigma=0.7 \times 10^{-4}$, and $\bar{x}=-0.16 \times 10^{-4}$.
- Interval:

$$
\begin{aligned}
& \left(\bar{x}-z_{1-0.05 / 2} \frac{\sigma}{\sqrt{n}}, \bar{x}+z_{1-0.05 / 2} \frac{\sigma}{\sqrt{n}}\right) \\
& =\left(-0.16 \times 10^{-4}-z_{0.975} \frac{0.7 \times 10^{-4}}{\sqrt{32}},-0.16 \times 10^{-4}+z_{0.975} \frac{0.7 \times 10^{-4}}{\sqrt{32}}\right) \\
& =\left(-0.16 \times 10^{-4}-1.96 \cdot 1.2 \times 10^{-5},-0.16 \times 10^{-4}+1.96 \cdot 1.2 \times 10^{-5}\right) \\
& =\left(-4.0 \times 10^{-5}, 7.5 \times 10^{-6}\right)
\end{aligned}
$$

- We are 95% confident that the true mean deviation from the target diameter of the rod journals is between -4.0×10^{-5} in and 7.5×10^{-6} in.
- Since 0 is in the confidence interval, there is not enough evidence to conclude that the rod journal grinding process is off target.

Your turn: hard disk failures

Random Intervals

- F. Willett, in the article The Case of the Derailed Disk Drives (Mechanical Engineering, 1988), discusses a study done to isolate the cause of blink code A failure in a model of Winchester hard disk drive.
- For each disk, the investigator measured the breakaway torque (in. oz.) required to loosen the drive's interrupter flag on the stepper motor shaft.
- Breakaway torques for 26 disk drives were recorded, with a sample mean of 11.5 in . oz.
- Suppose you know the true standard deviation of the breakaway torques is 5.1 in . oz.
- Calculate and interpret:

1. A two-sided 90% confidence interval for the true mean breakaway torque of the relevant type of Winchester drive.
2. An analogous two-sided 95% confidence interval.
3. An analogous two-sided 99% confidence interval.

- Is there enough evidence to conclude that the mean breakaway torque is different from the factory's standard of 33.5 in . oz.?

Answers: hard disk failures

- All three confidence intervals have the form:

Motivation

Random Intervals

$$
\begin{aligned}
& \left(\bar{x}-z_{1-\alpha / 2} \frac{\sigma}{\sqrt{n}}, \bar{x}+z_{1-\alpha / 2} \frac{\sigma}{\sqrt{n}}\right) \\
& =\left(11.5-z_{1-\alpha / 2} \frac{5.1}{\sqrt{26}}, 11.5+z_{1-\alpha / 2} \frac{5.1}{\sqrt{26}}\right) \\
& =\left(11.5-1.0002 \cdot z_{1-\alpha / 2}, 11.5+1.0002 \cdot z_{1-\alpha / 2}\right)
\end{aligned}
$$

- The confidence intervals are thus:

1. $90 \% \mathrm{Cl}$ means $\alpha=0.1$

$$
\begin{aligned}
& \left(11.5-1.0002 \cdot z_{1-0.1 / 2}, 11.5+1.0002 \cdot z_{1-0.1 / 2}\right) \\
& =\left(11.5-1.0002 \cdot z_{0.95}, 11.5+1.0002 \cdot z_{0.95}\right) \\
& =(11.5-1.0002 \cdot 1.64,11.5+1.0002 \cdot 1.64) \\
& =(9.86,13.14)
\end{aligned}
$$

Answers: hard disk failures

2. $95 \% \mathrm{Cl}$ means $\alpha=0.05$

$$
\begin{aligned}
& \left(11.5-1.0002 \cdot z_{1-0.05 / 2}, 11.5+1.0002 \cdot z_{1-0.05 / 2}\right) \\
& =\left(11.5-1.0002 \cdot z_{0.975}, 11.5+1.0002 \cdot z_{0.975}\right) \\
& =(11.5-1.0002 \cdot 1.96,11.5+1.0002 \cdot 1.96) \\
& =(9.54,13.46)
\end{aligned}
$$

3. $99 \% \mathrm{Cl}$ means $\alpha=0.01$

$$
\begin{aligned}
& \left(11.5-1.0002 \cdot z_{1-0.01 / 2}, 11.5+1.0002 \cdot z_{1-0.01 / 2}\right) \\
& =\left(11.5-1.0002 \cdot z_{0.995}, 11.5+1.0002 \cdot z_{0.995}\right) \\
& =(11.5-1.0002 \cdot 2.33,11.5+1.0002 \cdot 2.33) \\
& =(9.17,13.83)
\end{aligned}
$$

Answers: hard disk failures

- Notice: the confidence intervals get wider as the confidence level $1-\alpha$ increases.
- None of these confidence intervals contains the manufacturer's target of 33.5 in . oz., so there is significant evidence that the process misses this target.
- Hence, there is a design flaw in the manufacturing process of the disk drives that must be corrected.

Controlling the width of a confidence interval

- If you want to estimate the breakaway torque with a 2 -sided, 95% confidence interval with $\pm 2.0 \mathrm{in}$. oz. of precision, what sample size would you need?
- The confidence interval is:

$$
\begin{aligned}
& \left(\bar{x}-z_{1-\alpha / 2} \frac{\sigma}{\sqrt{n}}, \bar{x}+z_{1-\alpha / 2} \frac{\sigma}{\sqrt{n}}\right) \\
& =\left(11.5-z_{1-0.05 / 2} \cdot \frac{5.1}{\sqrt{n}}, 11.5+z_{1-0.05 / 2} \cdot \frac{5.1}{\sqrt{n}}\right) \\
& =\left(11.5-z_{0.975} \cdot \frac{5.1}{\sqrt{n}}, 11.5+z_{0.975} \cdot \frac{5.1}{\sqrt{n}}\right) \\
& =\left(11.5-1.96 \cdot 5.1 \cdot n^{-1 / 2}, 11.5+1.96 \cdot 5.1 \cdot n^{-1 / 2}\right) \\
& =\left(11.5-9.996 \cdot n^{-1 / 2}, 11.5+9.996 \cdot n^{-1 / 2}\right)
\end{aligned}
$$

Controlling the width of a confidence interval

The interval precision (half-width) δ is:

$$
\begin{aligned}
\delta & =\frac{1}{2}\left(\left(11.5+9.996 \cdot n^{-1 / 2}\right)-\left(11.5-9.996 \cdot n^{-1 / 2}\right)\right) \\
& =9.996 \cdot n^{-1 / 2}
\end{aligned}
$$

We require δ to be at most 2 :

$$
\begin{aligned}
2.0 & \leq 9.996 \cdot n^{-1 / 2} \\
n & \geq 25
\end{aligned}
$$

- We would need a sample of 25 disk drives to meet a precision of ± 2.0.

