Functions of Several Random Variables (Ch. 5.5)

Functions of
Several Random Variables

Approximating the Mean and Variance of a Function

Expectations and variances of linear combinations

Will Landau

Iowa State University

Mar 7, 2013

Outline

Functions of Several Random Variables (Ch. 5.5) Will Landau

Functions of
Several Random

Functions of Several Random Variables

Approximating the Mean and Variance of a Function
Expectations and variances of linear combinations

The Central Limit Theorem

Expectations and variances of linear combinations

The Central Limit Theorem

Functions of several random variables

Functions of
Several Random Variables

Approximating the Mean and Variance of a Function form:

$$
U=g(X, Y, \ldots, Z)
$$

where X, Y, \ldots, Z are random variables.

- U is itself a random variable.

Expectations and variances of linear

The Central Limit Theorem

- We often consider functions of random variables of the

Example: connecting steel parts

- Suppose that a steel plate with nominal thickness .15 in. is to rest in a groove of nominal width . 155 in ., machined on the surface of a steel block.

Functions of
Several Random Variables

Approximating the Mean and Variance of a Function
Relative Frequency Distribution of Slot Widths

Slot Width (in.)	Relative Frequency
.153	.2
.154	.2
.155	.4
.156	.2

Expectations and variances of linear combinations

The Central Limit Theorem

- $X=$ plate thickness
- $Y=$ slot width
- $U=Y-X$, the "wiggle room" of the plate

The distributions of X, Y, and U

Functions of
Several Random Variables (Ch. 5.5)

Will Landau

Functions of
Several Random
Variables
Approximating the Mean and Variance

The Central Limit Theorem
of a Function
Expectations and variances of linear combinations

- Determining the distribution of U is difficult in the continuous case.

The Probability Function for the

Clearance $U=Y-X$

u	$f(u)$
.003	.06
.004	$.12=.06+.06$
.005	$.26=.08+.06+.12$
.006	$.26=.08+.12+.06$
.007	$.22=.16+.06$
.008	.08

Marginal and Joint Probabilities for X and Y

y	x	.148	.149	.150	$f_{Y}(y)$
.156	.08	.06	.06	.2	
.155	.16	.12	.12	.4	
.154	.08	.06	.06	.2	
.153	.08	.06	.06	.2	
$f_{X}(x)$.4	.3	.3		

Outline

Functions of Several Random Variables (Ch. 5.5) Will Landau

Functions of
Several Random Variables

Approximating the Mean and Variance of a Function

Approximating the Mean and Variance of a Function
Expectations and variances of linear combinations

The Central Limit Theorem

Expectations and variances of linear combinations

The Central Limit Theorem

Approximating $E(U)$ and $\operatorname{Var}(U)$ when determining $f_{U}(u)$ is too hard

- If X, Y, \ldots, Z are independent, g is well-behaved, and the variances $\operatorname{Var}(X), \operatorname{Var}(Y), \ldots, \operatorname{Var}(Z)$ are small enough, then $U=g(X, Y, \ldots Z)$ has:

$$
\begin{aligned}
E(U) & \approx g(E(X), E(Y), \ldots, E(Z)) \\
\operatorname{Var}(U) & \approx\left(\frac{\partial g}{\partial x}\right)^{2} \operatorname{Var}(X)+\left(\frac{\partial g}{\partial y}\right)^{2} \operatorname{Var}(Y)+\cdots+\left(\frac{\partial g}{\partial z}\right)^{2} \operatorname{Var}(Z)
\end{aligned}
$$

Functions of
Several Random Variables

Approximating the Mean and Variance of a Function

Expectations and variances of linear combinations

The Central Limit Theorem

- These formulas are often called the propagation of error formulas.

Example: an electric circuit

Resistor 2

Functions of
Several Random Variables

Approximating the Mean and Variance of a Function

Expectations and variances of linear combinations

The Central Limit

- R is the total resistance of the circuit.
- R_{1}, R_{2}, and R_{3} are the resistances of resistors 1,2 , and 3 , respectively.
- $E\left(R_{i}\right)=100, \operatorname{Var}\left(R_{i}\right)=2, i=1,2,3$.

$$
R=g\left(R_{1}, R_{2}, R_{3}\right)=R_{1}+\frac{R_{2} R_{3}}{R_{2}+R_{3}}
$$

Example: an electric circuit

Will Landau

$$
\begin{aligned}
E(R) & \approx g(100,100,100)=100+\frac{(100)(100)}{100+100}=150 \Omega \\
\frac{\partial g}{\partial r_{1}} & =1 \\
\frac{\partial g}{\partial r_{2}} & =\frac{\left(r_{2}+r_{3}\right) r_{3}-r_{2} r_{3}}{\left(r_{2}+r_{3}\right)^{2}}=\frac{r_{3}^{2}}{\left(r_{2}+r_{3}\right)^{2}} \\
\frac{\partial g}{\partial r_{3}} & =\frac{\left(r_{2}+r_{3}\right) r_{2}-r_{2} r_{3}}{\left(r_{2}+r_{3}\right)^{2}}=\frac{r_{2}^{2}}{\left(r_{2}+r_{3}\right)^{2}} \\
\operatorname{Var}(\mathrm{R}) & \approx(1)^{2}(2)^{2}+\left(\frac{(100)^{2}}{(100+100)^{2}}\right)^{2}(2)^{2}+\left(\frac{(100)^{2}}{(100+100)^{2}}\right)^{2}(2)^{2} \\
& =4.5
\end{aligned}
$$

$\mathrm{SD}(R) \sqrt{4.5} \approx 2.12 \Omega$

Outline

Functions of Several Random Variables (Ch. 5.5)

Will Landau

Functions of
Several Random

Functions of Several Random Variables

Approximating the Mean and Variance of a Function Expectations and variances of linear combinations

The Central Limit Theorem

Expectations and variances of linear combinations

The Central Limit Theorem

Expectations and variances of linear combinations

- $X_{1}, X_{2}, \ldots, X_{n}$ are independent random variables and

$$
Y=a_{0}+a_{1} X_{1}+a_{2} X_{2}+\cdots+a_{n} X_{n}
$$

then:

$$
\begin{aligned}
E(Y) & =E\left(a_{0}+a_{1} X_{1}+a_{2} X_{2}+\cdots+a_{n} X_{n}\right) \\
& =a_{0}+a_{1} E\left(X_{1}\right)+a_{2} E\left(X_{2}\right)+\cdots+a_{n} E\left(X_{n}\right) \\
\operatorname{Var}(Y) & =\operatorname{Var}\left(a_{0}+a_{1} X_{1}+a_{2} X_{2}+\cdots+a_{n} X_{n}\right) \\
& =a_{1}^{2} \cdot \operatorname{Var}\left(X_{1}\right)+a_{2}^{2} \cdot \operatorname{Var}\left(X_{2}\right)+\cdots+a_{n}^{2} \cdot \operatorname{Var}\left(X_{n}\right)
\end{aligned}
$$

Your turn: linear combinations

- Say we have two independent random variables X and Y with $E(X)=3.3, \operatorname{Var}(X)=1.91, E(Y)=25$, and $\operatorname{Var}(Y)=65$.
- Find:

Functions of
Several Random Variables

Approximating the
Mean and Variance
of a Function
Expectations and variances of linear combinations

The Central Limit Theorem

Answers: linear combinations

Will Landau

$$
\begin{aligned}
E(3+2 X-3 Y) & =3+2 E(X)-3 E(Y) \\
& =3+2 \cdot 3.3-3 \cdot 25 \\
& =-65.4
\end{aligned}
$$

$$
\begin{aligned}
E(-4 X+3 Y) & =-4 E(X)+3 E(Y) \\
& =-4 \cdot 3.3+3 \cdot 25 \\
& =61.8
\end{aligned}
$$

$$
E(-4 X-6 Y)=-4 \cdot E(X)-6 \cdot E(Y)
$$

$$
=-4 \cdot 3.3-6 \cdot 25
$$

$$
=-163.2
$$

Answers: linear combinations

Will Landau

$$
\begin{aligned}
\operatorname{Var}(3+2 X-3 Y) & =2^{2} \cdot \operatorname{Var}(X)+(-3)^{2} \operatorname{Var}(Y) \\
& =4 \cdot 1.91+9 \cdot 65 \\
& =592.64 \\
\operatorname{Var}(2 X-5 Y) & =2^{2} \cdot \operatorname{Var}(X)+(-5)^{2} \operatorname{Var}(Y) \\
& =4 \cdot 1.91+25 \cdot 65 \\
& =1632.64
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Var}(-4 X-6 Y) & =(-4)^{2} \cdot \operatorname{Var}(X)+(-6)^{2} \operatorname{Var}(Y) \\
& =16 \cdot 1.91+36 \cdot 65 \\
& =2370.56
\end{aligned}
$$

Your turn: more linear combinations

Functions of
Several Random Variables

- Say $X \sim \operatorname{Binomial}(n=10, p=0.5)$ and $Y \sim$ Poisson $(\lambda=3)$.
- Calculate:

Approximating the Mean and Variance of a Function

Expectations and variances of linear combinations

The Central Limit

$$
\begin{array}{r}
E(5+2 X-7 Y) \\
\operatorname{Var}(5+2 X-7 Y)
\end{array}
$$

Answer: more linear combinations

- First, note that:

Will Landau

$$
\begin{aligned}
E(X) & =n p=10 \cdot 0.5=5 \\
E(Y) & =\lambda=3 \\
\operatorname{Var}(X) & =n p(1-p)=10(0.5)(1-0.5)=2.5 \\
\operatorname{Var}(Y) & =\lambda=3
\end{aligned}
$$

Now, we can calculate:

$$
\begin{aligned}
E(5+2 X-7 Y) & =5+2 E(X)-7 E(Y) \\
& =5+2 \cdot 5-7 \cdot 3 \\
& =-6
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Var}(5+2 X-7 Y) & =2^{2} \cdot \operatorname{Var}(X)+(-7)^{2} \cdot \operatorname{Var}(Y) \\
& =4 \cdot 2.5+49 \cdot 3 \\
& =157
\end{aligned}
$$

iid random variables.

- Identically Distributed: Random variables $X_{1}, X_{2}, \ldots, X_{n}$ are identically distributed if they have the same probability distribution.
- "iid": Random variables $X_{1}, X_{2}, \ldots, X_{n}$ are iid if they

Approximating the Mean and Variance of a Function

Expectations and variances of linear combinations are Independent and Identically Distributed.

Your turn: averages of iid random variables

- $X_{1}, X_{2}, \ldots, X_{n}$ are iid with expectation μ and variance σ^{2}.
- Derive:

Will Landau

Functions of
Several Random Variables

Approximating the Mean and Variance of a Function

$$
\begin{aligned}
& E(\bar{X}) \\
& \operatorname{Var}(\bar{X})
\end{aligned}
$$

where:

$$
\bar{X}=\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}
$$

the mean of the X_{i} 's.

Answers: averages of iid random variables

Functions of
Several Random

$$
\begin{aligned}
E(\bar{X}) & =E\left(\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}\right) \\
& =\frac{1}{n} E\left(X_{1}\right)+\frac{1}{n} E\left(X_{2}\right)+\cdots+\frac{1}{n} E\left(X_{n}\right) \\
& =\underbrace{\frac{1}{n} \mu+\frac{1}{n} \mu+\cdots+\frac{1}{n} \mu}_{n \text { times }} \\
& =n \cdot \frac{1}{n} \mu \\
& =\mu
\end{aligned}
$$

- Remember $E(\bar{X})=\mu$: it's an important result.

Answers: averages of iid random variables

Will Landau

$$
\begin{aligned}
\operatorname{Var}(\bar{X}) & =\operatorname{Var}\left(\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}\right) \\
& =\underbrace{\left(\frac{1}{n}\right)^{2} \operatorname{Var}\left(X_{1}\right)+\left(\frac{1}{n}\right)^{2} \operatorname{Var}\left(X_{2}\right)+\cdots+\left(\frac{1}{n}\right)^{2} \cdot \operatorname{Var}\left(X_{n}\right)}_{n \text { times }} \\
& =\underbrace{\frac{1}{n^{2}} \sigma^{2}+\frac{1}{n^{2}} \sigma^{2}+\cdots+\frac{1}{n^{2}} \sigma^{2}} \\
& =n \cdot \frac{1}{n^{2}} \sigma^{2} \\
& =\frac{\sigma^{2}}{n}
\end{aligned}
$$

- Remember $\operatorname{Var}(\bar{X})=\frac{\sigma^{2}}{n}:$ it's another important result.

Example: length of seeds

- A botanist has collected a sample of 10 seeds and measures the length of each.
- The seed lengths $X_{1}, X_{2}, \ldots, X_{10}$ are supposed to be iid with mean $\mu=5 \mathrm{~mm}$ and variance $\sigma^{2}=2 \mathrm{~mm}^{2}$.

$$
\begin{aligned}
& E(\bar{X})=\mu=5 \\
& \operatorname{Var}(\bar{X})=\sigma^{2} / n=2 / 10=0.2
\end{aligned}
$$

Outline

Functions of Several Random Variables (Ch. 5.5) Will Landau

Functions of Several Random Variables

Approximating the Mean and Variance of a Function

Approximating the Mean and Variance of a Function
Expectations and variances of linear combinations

The Central Limit Theorem

Expectations and variances of linear combinations

The Central Limit Theorem

The Central Limit Theorem

Functions of

Functions of
Several Random Variables

- If $X_{1}, X_{2}, \ldots, X_{n}$ are any iid random variables with mean μ and variance $\sigma^{2}<\infty$, and if $n \geq 25$,

$$
\bar{X} \approx \operatorname{Normal}\left(\mu, \frac{\sigma^{2}}{n}\right)
$$

Approximating the Mean and Variance of a Function

Expectations and variances of linear combinations

The Central Limit Theorem

- The Central Limit Theorem (CLT) one of the most important and useful results in statistics.

Example: tool serial numbers

- $W_{1}=$ last digit of the serial number observed next

Will Landau

 Monday at 9 AM- W_{2} = last digit of the serial number the Monday after at 9 AM
- W_{1} and W_{2} are independent with pmf:

$$
f(w)= \begin{cases}0.1 & w=0,1,2, \ldots, 9 \\ 0 & \text { otherwise }\end{cases}
$$

Functions of
Several Random Variables

Approximating the
Mean and Variance of a Function

Expectations and variances of linear combinations

The Central Limit Theorem

- $\bar{W}=\frac{1}{2}\left(W_{1}+W_{2}\right)$ has the pmf:

The Probability Function for \bar{W} for $n=2$

\bar{w}	$f(\bar{w})$								
0.0	. 01	2.0	. 05	4.0	. 09	6.0	. 07	8.0	. 03
0.5	. 02	2.5	. 06	4.5	. 10	6.5	. 06	8.5	. 02
1.0	. 03	3.0	. 07	5.0	. 09	7.0	. 05	9.0	. 01
1.5	. 04	3.5	. 08	5.5	. 08	7.5	. 04		

Example: tool serial numbers

- What if $\bar{W}=\frac{1}{8}\left(W_{1}+W_{2}+\cdots+W_{8}\right)$, the average of 8 days of initial serial numbers?

The Central Limit
Theorem

Example: excess sale time

- $\bar{S}=$ sample mean excess sale time (over a 7.5 s threshold) for 100 stamp sales.
- Each individual excess sale time should have an $\operatorname{Exp}(\alpha=16.5$ s) distribution. That means:
- $E(\bar{S})=\alpha=16.5 \mathrm{~s}$
- $S D(\bar{S})=\sqrt{\operatorname{Var}(\bar{S})}=\sqrt{\frac{\alpha^{2}}{100}}=1.65 \mathrm{~s}$
- By the Central Limit Theorem, $\bar{S} \approx N\left(16.5,1.65^{2}\right)$
- We want to approximate $P(\bar{S}>17)$.

Will Landau

Functions of
Several Random Variables

Approximating the Mean and Variance of a Function

Expectations and

The approximate probability
distribution of \bar{S} is normal
with mean 16.5 and standard

Example: excess sale time

Functions of
Several Random Variables (Ch. 5.5)

Will Landau

Functions of
Several Random Variables

$$
\begin{aligned}
P(\bar{S}>17) & =P\left(\frac{\bar{S}-16.5}{1.65}>\frac{17-16.5}{1.65}\right) \\
& \approx P(Z>0.303) \quad(Z \sim N(0,1)) \\
& =1-P(Z \leq 0.303) \\
& =1-\Phi(0.303) \\
& =1-0.62 \quad \text { from the standard normal table } \\
& =0.38
\end{aligned}
$$

Example: net weight of baby food jars

- Individual jar weights are iid with unknown mean μ and standard deviation $\sigma=1.6 \mathrm{~g}$
- $\bar{V}=$ sample mean weight of n jars $\approx N\left(\mu, \frac{1.6^{2}}{n}\right)$.
- We want to find μ. One way to hone in on μ is to find n such that:

$$
P(\mu-0.3<\bar{V}<\mu+0.3)=0.8
$$

That way, our measured value of \bar{V} is likely to be close to μ.

Example: net weight of baby food jars

Will Landau

$$
\begin{aligned}
0.8 & =P(\mu-0.3<\bar{V}<\mu+0.3) \\
& =P\left(\frac{-0.3}{1.6 / \sqrt{n}}<\frac{\bar{V}-\mu}{1.6 / \sqrt{n}}<\frac{0.3}{1.6 / \sqrt{n}}\right) \\
& \approx P(-0.19 \sqrt{n}<Z<0.19 \sqrt{n}) \quad(\text { by CLT }) \\
& =1-2 \Phi(-0.19 \sqrt{n}) \quad(\text { look at the } \mathrm{N}(0,1) \mathrm{pdf}) \\
\Phi^{-1}(0.1) & =-0.19 \sqrt{n} \\
n & =\frac{\Phi^{-1}(0.1)^{2}}{(-0.19)^{2}} \\
& =\frac{(-1.28)^{2}}{(-0.19)^{2}} \quad \text { (standard normal table) } \\
& =46.10
\end{aligned}
$$

- Hence, we'll need a sample size of $n=47$.

Example: cars

- Suppose a bunch of cars pass through certain stretch of
road. Whenever a car comes, you look at your watch and record the time.
- Let X_{i} be the time (in hours) between when the i 'th car

Functions of
Several Random Variables

Approximating the Mean and Variance of a Function comes and the $(i+1)$ 'th car comes, $i=1, \ldots, 44$. Suppose you know:

Expectations and variances of linear combinations

The Central Limit Theorem

$$
X_{1}, X_{2}, \ldots, X_{44} \sim \text { iid } f(x)=e^{-x} \quad x \geq 0
$$

- Find the probability that the average time gap between cars exceeds 1.05 hours.

Example: cars

Functions of
Several Random
Variables (Ch. 5.5)

Will Landau

$$
\begin{aligned}
\mu & =E\left(X_{1}\right) \\
& =\int_{-\infty}^{\infty} x f(x) d x \\
& =\int_{0}^{\infty} x e^{-x} d x \\
& =-\left.e^{-x}(x+1)\right|_{0} ^{\infty} \quad \text { integration by parts } \\
& =1
\end{aligned}
$$

Functions of

Several Random
Variables

Approximating the Mean and Variance of a Function

Expectations and variances of linear combinations

The Central Limit Theorem

Example: cars

Functions of

Will Landau

Functions of

$$
\begin{aligned}
E\left(X_{1}^{2}\right) & =\int_{-\infty}^{\infty} x^{2} f(x) d x \\
& =\int_{0}^{\infty} x^{2} e^{-x} d x \\
& =-\left.e^{-x}\left(x^{2}+2 x+2\right)\right|_{0} ^{\infty} \quad \text { integration by parts } \\
& =2 \\
\sigma^{2} & =\operatorname{Var}\left(X_{1}\right) \\
& =E\left(X_{1}^{2}\right)-E^{2}\left(X_{1}\right) \\
& =2-1^{2} \\
& =1
\end{aligned}
$$

Example: cars

Functions of

Will Landau

Functions of

Several Random Variables

Approximating the

$$
\begin{aligned}
\bar{X} & \sim \text { approx. } N\left(\mu, \sigma^{2} / n\right) \\
& =N(1,1 / 44)
\end{aligned}
$$

Thus:

Mean and Variance of a Function

Expectations and variances of linear combinations

The Central Limit
Theorem
$\frac{\bar{X}-1}{\sqrt{1 / 44}} \sim N(0,1)$

Example: cars

Functions of
Several Random Variables (Ch. 5.5)

Will Landau

Functions of
Several Random Variables

Approximating the Mean and Variance

$$
\begin{aligned}
P(\bar{X}>1.05) & =P\left(\frac{\bar{X}-1}{\sqrt{1 / 44}}>\frac{1.05-1}{\sqrt{1 / 44}}\right) \\
& =P\left(\frac{\bar{X}-1}{\sqrt{1 / 44}}>0.332\right) \\
& \approx P(Z>0.332) \\
& =1-P(Z \leq 0.332) \\
& =1-\Phi(0.332) \\
& =1-0.630=0.370
\end{aligned}
$$

Example: cars

Functions of
Several Random
Variables (Ch. 5.5)
Will Landau
Density of X_1

Functions of
Several Random Variables

Approximating the Mean and Variance of a Function

Expectations and variances of linear combinations

The Central Limit Theorem

Example: cars

Functions of
Several Random
Variables (Ch. 5.5)

Will Landau
Density of Average(X)

Functions of
Several Random Variables

Approximating the Mean and Variance of a Function

Expectations and variances of linear combinations

The Central Limit Theorem

Example: cars

Functions of
Several Random
Variables (Ch. 5.5)
Will Landau
Densities of and Average(X) and $N(1,1 / 44)$

Functions of
Several Random Variables

Approximating the Mean and Variance of a Function

Expectations and variances of linear combinations

The Central Limit Theorem

