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Example: bearings

I Consider multiple random variables at the same time.
I Suppose you’re manufacturing ring bearings (nominal

inner diameter 1.00 in) on rods (nominal diameter 0.99
in). Let:

I X = the inside diameter of the next ring bearing
I Y = rod diameter where the ring is located

I We might want to know probabilities like

P(X < Y )

since if X < Y , the assembly cannot be made.
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Example: bearings
I A joint probability function for discrete random

variables X and Y is a nonnegative function f (x , y)
such that:

f (x , y) = P(X = x and Y = y)

as a distribution, f ≥ 0 and:∑
x ,y

f (x , y) = 1

I For the discrete case, it is useful to give f (x , y) in a
table.

I Example: suppose:
I X = torque required to loosen bolt #3 in the next

apparatus.
I Y = torque for bolt #4.

where all torques are rounded to the nearest integer.
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Example: torque (blank entries are 0)

I P(X = 18 and Y = 17) = 2
34

I P(X = 14 and Y = 19) = 0
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Your turn: torque

Calculate:

1. P(X ≥ Y )

2. P(|X − Y | ≤ 1)
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Answers: torque
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Answers: torque

P(X ≥ Y ) =
∑
x≥y

f (x , y)

= f (20, 20) + f (20, 19) + f (20, 18) + · · ·+ f (13, 13)

Dropping all the f (x , y) values that equal 0:

= f (15, 13) + f (15, 14) + f (15, 15) + f (16, 16)

+ f (17, 17) + f (18, 14) + f (18, 17) + f (18, 18)

+ f (19, 16) + f (19, 18) + f (20, 20)

1

34
+

1

34
+

3

34
+

2

34
+ · · ·+ 1

34
=

17

34
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Answers: torque

P(X ≥ Y ) =
∑
x≥y

f (x , y)

= f (13, 13) + f (14, 13) + f (14, 14) + · · ·+ f (20, 20)

Dropping all the f (x , y) values that equal 0:

= f (15, 14) + f (15, 15) + f (15, 16) + f (16, 16)

+ f (16, 17) + f (17, 17) + f (17, 18) + f (18, 17)

+ f (18, 18) + f (19, 18) + f (19, 20) + f (20, 20)

=
18

34
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Marginal distributions

I The marginal distributions of X and Y , which have
joint pmf f (x , y), are:

fX (x) =
∑
y

f (x , y)

fY (y) =
∑
x

f (x , y)

I fX (x) is just the ordinary, univariate pmf of X .
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Your turn: torque

I Calculate the marginal pmfs of X and Y
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Answers: torque

I Take the column sums to calculate fX at each x .

I Take the row sums to calculate fY at each y .

x fX (x)

11 1/34
12 1/34
13 1/34
14 2/34
15 9/34
16 3/34
17 4/34
18 7/34
19 5/34
20 1/34

y fY (y)

13 5/34
14 2/34
15 5/34
16 6/34
17 7/34
18 7/34
19 3/34
20 1/34

© Will Landau Iowa State University Mar 5, 2013 13 / 33



Joint Distributions
and Independence

(Ch. 5.4)

Will Landau

The Discrete Case

Joint Distributions

Marginal Distributions

Conditional
Distributions

Independence

The Continuous
Case

Answers: torque

I It is customary to write the marginal pmfs in the
margins of the table of the joint pmf.
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Conditional distributions

I The conditional distribution of Y given X = x is a
function, fY |X=x , given by:

fY |X=x(y) =
f (x , y)

fX (x)

I To make sense of conditional distributions, return to the
torque example...
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Example: torque

I For example, fY |X=18(20) = 2/34
7/34 = 2/7. That makes sense

because:

I Since fX (18) = 7/34, we expect roughly 7 out of every
34 cases to have X = 18.

I Since fX ,Y (18, 20) = 2/34, we expect roughly 2 of those
7 cases to also have Y = 20.
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Example: torque

y 13 14 15 16 17 18 19 20
fX ,Y (18, y) 2/34 0 1/34 2/34 0 0 2/34 0
fY |X=18(y) 2/7 0 1/7 2/7 0 0 2/7 0

I
∑20

y=13 fX ,Y (18, y) = fX (18) = 7/34

I
∑20

y=13 fY |X=18(y) = 1

I The conditional distribution, fY |X=18 is the renormalized
column of the joint distribution corresponding to X = 18.
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Your turn: torque

I Calculate:

1. fY |X=15(y)
2. fY |X=20(y)
3. fX |Y=18(x)

© Will Landau Iowa State University Mar 5, 2013 18 / 33



Joint Distributions
and Independence

(Ch. 5.4)

Will Landau

The Discrete Case

Joint Distributions

Marginal Distributions

Conditional
Distributions

Independence

The Continuous
Case

Answers: torque

1.
y 13 14 15 16 17 18 19 20

fY |X=15(y) 1/9 1/9 3/9 2/9 2/9 0 0 0

2.
y 13 14 15 16 17 18 19 20

fY |X=20(y) 0 0 0 0 0 0 0 1

3.
x 11 12 13 14 15 16 17 18 19 20

fX |Y=18(x) 0 0 1/5 1/5 0 0 1/5 1/5 1/5 0
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Given a set of marginal distributions, there are many possible joint

distributions.

I What do you notice about each of the following joint
distributions?
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Given a set of marginal distributions, there are many possible joint

distributions.

I What do you notice about each of the following joint
distributions?

1. Given X = x , you know what Y has to be (and vice versa).

2. Each P(X = x ,Y = y) is just P(X = x) · P(Y = y); i.e., X
and Y have no influence on each other.
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A look at distribution 2

I Among just the cases when X = 1:
I Y = 3 every 16 out of (16 + 16+ 8) = 40 times: i.e.,

with probability 16
40 = 0.4

I Same with Y = 2
I Y = 1 every 8 out of (16 + 16+ 8) = 40 times: i.e.,

with probability 0.2

I So pmf of Y given X = 1 is the same as the marginal
pmf of Y .
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Independence

I Discrete random variables X and Y are independent
(written X ⊥⊥ Y ) if for all x and y ,

P(Y = y | X = x) = P(Y = y)

where | means “given”.

I If X ⊥⊥ Y , then:

P(Y = y and X = x) = P(X = x) · P(Y = y)

f (x , y) = fX (x) · fY (y)

I If X and Y are not only independent but also have the
same marginal distribution, then they are independent
and identically distributed, abbreviated iid.
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Continuous joint distributions

I A joint probability density function (pdf) for two
continuous random variables X and Y is a nonnegative
function with:∫ ∫

f (x , y)dxdy = 1

P((X ,Y ) ∈ R) =

∫ ∫
R
f (x , y)dxdy

where R is some region of R2.
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Example: sales desk

I S = true excess time (over a 7.5 s threshold) required
to complete the next sale

I R = excess time measured with a stopwatch

f (s, r) =


1

16.5e
−s/16.5 1√

2π(0.25)
e−(r−s)

2/2(0.25) s > 0

0 otherwise
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f (s, r) is valid.

∫ ∫
f (s, r)ds dr =

∫ ∞
0

∫ ∞
−∞

1

16.5
√

2π(0.25)
e−(s/16.5)−((r−s)2/2(0.25))dr ds

=

∫ ∞
0

1

1.65
e−s/16.5

{∫ ∞
−∞

1√
2π(0.25)

e−(r−s)2/2(0.25)dr

}
ds

=

∫ ∞
0

1

16.5
e−s/16.5ds

= 1
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A look at f (s, r)
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Checking for measurement bias: P(measured excess time > actual

excess time)

P(R > S) =

∫ ∫
r>s

f (s, r)ds dr

=

∫ ∞
0

∫ ∞
s

f (s, r)dr ds

=

∫ ∞
0

1

16.5
e−s/16.5

{∫ ∞
s

1√
2π(0.25

e−(r−s)2/2(0.25)dr

}
ds

=

∫ ∞
0

1

16.5
e−s/16.5

{
1

2

}
ds

=
1

2
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Checking for measurement bias: region of
integration
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Probability of taking too long

P(S > 20) =

∫ ∫
s>20

f (s, r)dr ds

=

∫ ∞
20

∫ ∞
−∞

f (s, r)dr ds

=

∫ ∞
20

1

16.5
e−s/16.5

{∫ ∞
−∞

1√
2π(0.25)

e−(r−s)2/s(0.25)

}
ds

=

∫ ∞
20

e−s/16.5ds

= e−20/16.5

≈ 0.30
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Continuous marginal and conditional distributions

I For continuous random variables X and Y , the
marginal distribution of X is:

fX (x) =

∫ ∞
−∞

f (x , y)dy

I The conditional distribution of Y given X = x is:

fY |X=x(y) =
f (x , y)

fX (x)
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