Joint Distributions and Independence
(Ch. 5.4)
Will Landau

Joint Distributions and Independence (Ch. 5.4)

The Discrete Case
Joint Distributions
Marginal Distributions
Conditional
Distributions
Independence
The Continuous
Case

Will Landau

Iowa State University
Mar 5, 2013

Outline

Joint Distributions
Marginal Distributions
Conditional Distributions Independence

The Continuous Case

Example: bearings

- Consider multiple random variables at the same time.
- Suppose you're manufacturing ring bearings (nominal
inner diameter 1.00 in) on rods (nominal diameter 0.99
- Suppose you're manufacturing ring bearings (nominal
inner diameter 1.00 in) on rods (nominal diameter 0.99 in). Let:
- $X=$ the inside diameter of the next ring bearing
- $Y=$ rod diameter where the ring is located
- We might want to know probabilities like

$$
P(X<Y)
$$

since if $X<Y$, the assembly cannot be made.

Example: bearings

- A joint probability function for discrete random variables X and Y is a nonnegative function $f(x, y)$ such that:

$$
f(x, y)=P(X=x \text { and } Y=y)
$$

as a distribution, $f \geq 0$ and:

$$
\sum_{x, y} f(x, y)=1
$$

- For the discrete case, it is useful to give $f(x, y)$ in a table.
- Example: suppose:
- $X=$ torque required to loosen bolt $\# 3$ in the next apparatus.
- $Y=$ torque for bolt \#4.
where all torques are rounded to the nearest integer.

Example: torque (blank entries are 0)

Joint Distributions and Independence (Ch. 5.4)

Will Landau

$f(x, y)$ for the Bolt Torque Problem

$y \backslash$	x	11	12	13	14	15	16	17	18	19	20
20									$2 / 34$	$2 / 34$	$1 / 34$
19								$2 / 34$			
18				$1 / 34$	$1 / 34$			$1 / 34$	$1 / 34$	$1 / 34$	
17					$2 / 34$	$1 / 34$	$1 / 34$	$2 / 34$			
16				$1 / 34$	$2 / 34$	$2 / 34$			$2 / 34$		
15	$1 / 34$	$1 / 34$			$3 / 34$						
14					$1 / 34$			$2 / 34$			
13					$1 / 34$						

- $P(X=18$ and $Y=17)=\frac{2}{34}$
- $P(X=14$ and $Y=19)=0$

Your turn: torque

Will Landau

$f(x, y)$ for the Bolt Torque Problem

$y \backslash$	x	11	12	13	14	15	16	17	18	19	20
20									$2 / 34$	$2 / 34$	$1 / 34$
19								$2 / 34$			
18				$1 / 34$	$1 / 34$			$1 / 34$	$1 / 34$	$1 / 34$	
17						$2 / 34$	$1 / 34$	$1 / 34$	$2 / 34$		
16		$1 / 34$	$1 / 34$			$2 / 34$	$2 / 34$			$2 / 34$	
15											
14					$1 / 34$			$2 / 34$			
13					$1 / 34$						

Calculate:

1. $P(X \geq Y)$
2. $P(|X-Y| \leq 1)$

Answers: torque

Will Landau

$y=x$	11	12	13	14	15	16	17	18	19	20
20										$*$
19									$*$	$*$
18								$*$	$*$	$*$
17							$*$	$*$	$*$	$*$
16						$*$	$*$	$*$	$*$	$*$
15					$*$	$*$	$*$	$*$	$*$	$*$
14				$*$	$*$	$*$	$*$	$*$	$*$	$*$
13			$*$	$*$	$*$	$*$	$*$	$*$	$*$	$*$

Combinations of bolt 3

 and bolt 4 torques with $x \geq y$
Answers: torque

Will Landau

$$
\begin{aligned}
P(X & \geq Y)=\sum_{x \geq y} f(x, y) \\
& =f(20,20)+f(20,19)+f(20,18)+\cdots+f(13,13)
\end{aligned}
$$

The Discrete Case
Joint Distributions
Marginal Distributions
Conditional
Distributions
Independence
The Continuous
Case

Dropping all the $f(x, y)$ values that equal 0 :

$$
\begin{aligned}
& =f(15,13)+f(15,14)+f(15,15)+f(16,16) \\
& +f(17,17)+f(18,14)+f(18,17)+f(18,18) \\
& +f(19,16)+f(19,18)+f(20,20) \\
& \frac{1}{34}+\frac{1}{34}+\frac{3}{34}+\frac{2}{34}+\cdots+\frac{1}{34}=\frac{17}{34}
\end{aligned}
$$

Answers: torque

y^{x}	11	12	13	14					18	19	20
20										*	*
19									*	*	*
18								*	*	*	
17							*	*	*		
16						*	*	*			
15				*	*	*	*				
14			*	*	*	*					
13		*	*	*							

Will Landau

The Discrete Case
Joint Distributions
Marginal Distributions
Conditional
Distributions
Independence
The Continuous

Combinations of bolt 3

and bolt 4 torques with $|x-y| \leq 1$

Answers: torque

The Discrete Case
Joint Distributions
Marginal Distributions

$$
\begin{aligned}
P(X & \geq Y)=\sum_{x \geq y} f(x, y) \\
& =f(13,13)+f(14,13)+f(14,14)+\cdots+f(20,20)
\end{aligned}
$$

Dropping all the $f(x, y)$ values that equal 0 :

$$
\begin{aligned}
& =f(15,14)+f(15,15)+f(15,16)+f(16,16) \\
& +f(16,17)+f(17,17)+f(17,18)+f(18,17) \\
& +f(18,18)+f(19,18)+f(19,20)+f(20,20) \\
& =\frac{18}{34}
\end{aligned}
$$

Marginal distributions

- The marginal distributions of X and Y, which have joint pmf $f(x, y)$, are:

$$
\begin{aligned}
f_{X}(x) & =\sum_{y} f(x, y) \\
f_{Y}(y) & =\sum_{x} f(x, y)
\end{aligned}
$$

- $f_{X}(x)$ is just the ordinary, univariate pmf of X.

Your turn: torque

Will Landau

- Calculate the marginal pmfs of X and Y
$f(x, y)$ for the Bolt Torque Problem

$y \backslash$	x	11	12	13	14	15	16	17	18	19	20
20									$2 / 34$	$2 / 34$	$1 / 34$
19								$2 / 34$			
18				$1 / 34$	$1 / 34$			$1 / 34$	$1 / 34$	$1 / 34$	
17						$2 / 34$	$1 / 34$	$1 / 34$	$2 / 34$		
16		$1 / 34$	$1 / 34$			$2 / 34$	$2 / 34$			$2 / 34$	
15		$1 / 34$									
14					$1 / 34$			$2 / 34$			
13					$1 / 34$						

The Discrete Case
Joint Distributions
Marginal Distributions
Conditional
Distributions
Independence
The Continuous Case

Answers: torque

Joint Distributions and Independence (Ch. 5.4)

- Take the column sums to calculate f_{X} at each x.
- Take the row sums to calculate f_{Y} at each y.

$$
\begin{array}{ccccc}
x & f_{X}(x) & & y & f_{Y}(y) \\
\cline { 1 - 2 } 11 & 1 / 34 & & 13 & 5 / 34 \\
12 & 1 / 34 & & 14 & 2 / 34 \\
13 & 1 / 34 & & 15 & 5 / 34 \\
14 & 2 / 34 & & 16 & 6 / 34 \\
15 & 9 / 34 & & 17 & 7 / 34 \\
16 & 3 / 34 & & 18 & 7 / 34 \\
17 & 4 / 34 & & 19 & 3 / 34 \\
18 & 7 / 34 & & 20 & 1 / 34 \\
19 & 5 / 34 & & & \\
20 & 1 / 34 & & &
\end{array}
$$

Will Landau

The Discrete Case
Joint Distributions
Marginal Distributions
Conditional
Distributions
Independence
The Continuous

Answers: torque

Will Landau

- It is customary to write the marginal pmfs in the margins of the table of the joint pmf.

Joint and Marginal Probabilities for X and Y

y	x	11	12	13	14	15	16	17	18	19	20	$f_{Y}(y)$
20									$2 / 34$	$2 / 34$	$1 / 34$	$5 / 34$
19								$2 / 34$				$2 / 34$
18				$1 / 34$	$1 / 34$			$1 / 34$	$1 / 34$	$1 / 34$		$5 / 34$
17						$2 / 34$	$1 / 34$	$1 / 34$	$2 / 34$			$6 / 34$
16					$1 / 34$	$2 / 34$	$2 / 34$			$2 / 34$		$7 / 34$
15		$1 / 34$	$1 / 34$			$3 / 34$						$5 / 34$
14						$1 / 34$			$2 / 34$			$3 / 34$
13					$1 / 34$						$1 / 34$	
$f_{X}(x)$	$1 / 34$	$1 / 34$	$1 / 34$	$2 / 34$	$9 / 34$	$3 / 34$	$4 / 34$	$7 / 34$	$5 / 34$	$1 / 34$		

Conditional distributions

- The conditional distribution of Y given $X=x$ is a function, $f_{Y \mid X=x}$, given by:

The Discrete Case
Joint Distributions
Marginal Distributions
Conditional
Distributions
Independence
The Continuous
Case

$$
f_{Y \mid X=x}(y)=\frac{f(x, y)}{f_{X}(x)}
$$

- To make sense of conditional distributions, return to the torque example...

Example: torque

Joint Distributions and Independence (Ch. 5.4)

Joint and Marginal Probabilities for X and Y

y	x	11	12	13	14	15	16	17	18	19	20	$f_{Y}(y)$
20									$2 / 34$	$2 / 34$	$1 / 34$	$5 / 34$
19								$2 / 34$	0			$2 / 34$
18				$1 / 34$	$1 / 34$			$1 / 34$	$1 / 34$	$1 / 34$		$5 / 34$
17						$2 / 34$	$1 / 34$	$1 / 34$	$2 / 34$			$6 / 34$
16					$1 / 34$	$2 / 34$	$2 / 34$		0	$2 / 34$		$7 / 34$
15		$1 / 34$	$1 / 34$			$3 / 34$			0			$5 / 34$
14						$1 / 34$			$2 / 34$			$3 / 34$
13						$1 / 34$			0			$1 / 34$
$f_{X}(x)$	$1 / 34$	$1 / 34$	$1 / 34$	$2 / 34$	$9 / 34$	$3 / 34$	$4 / 34$	$7 / 34$	$5 / 34$	$1 / 34$		

Will Landau

The Discrete Case
Joint Distributions
Marginal Distributions
Conditional
Distributions
Independence
The Continuous

- For example, $f_{Y \mid X=18}(20)=\frac{2 / 34}{7 / 34}=2 / 7$. That makes sense because:
- Since $f_{X}(18)=7 / 34$, we expect roughly 7 out of every 34 cases to have $X=18$.
- Since $f_{X, Y}(18,20)=2 / 34$, we expect roughly 2 of those 7 cases to also have $Y=20$.

Example: torque

Will Landau

y	13	14	15	16	17	18	19	20
$f_{X, Y}(18, y)$	$2 / 34$	0	$1 / 34$	$2 / 34$	0	0	$2 / 34$	0
$f_{Y \mid X=18}(y)$	$2 / 7$	0	$1 / 7$	$2 / 7$	0	0	$2 / 7$	0

- $\sum_{y=13}^{20} f_{X, Y}(18, y)=f_{X}(18)=7 / 34$
- $\sum_{y=13}^{20} f_{Y \mid X=18}(y)=1$
- The conditional distribution, $f_{Y \mid X=18}$ is the renormalized column of the joint distribution corresponding to $X=18$.

Your turn: torque

Joint Distributions and Independence (Ch. 5.4)

Will Landau
Joint and Marginal Probabilities for X and Y

y	x	11	12	13	14	15	16	17	18	19	20	$f_{Y}(y)$
20									$2 / 34$	$2 / 34$	$1 / 34$	$5 / 34$
19								$2 / 34$				$2 / 34$
18				$1 / 34$	$1 / 34$			$1 / 34$	$1 / 34$	$1 / 34$		$5 / 34$
17						$2 / 34$	$1 / 34$	$1 / 34$	$2 / 34$			$6 / 34$
16					$1 / 34$	$2 / 34$	$2 / 34$			$2 / 34$		$7 / 34$
15		$1 / 34$	$1 / 34$			$3 / 34$					$5 / 34$	
14						$1 / 34$			$2 / 34$			$3 / 34$
13					$1 / 34$						$1 / 34$	
$f_{X}(x)$		$1 / 34$	$1 / 34$	$1 / 34$	$2 / 34$	$9 / 34$	$3 / 34$	$4 / 34$	$7 / 34$	$5 / 34$	$1 / 34$	

- Calculate:

1. $f_{Y \mid X=15}(y)$
2. $f_{Y \mid X=20}(y)$
3. $f_{X \mid Y=18}(x)$

Answers: torque

Joint Distributions and Independence (Ch. 5.4)

Will Landau

The Discrete Case
Joint Distributions
Marginal Distributions
Conditional
Distributions
Independence
The Continuous
Case

2. | y | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $f_{Y \mid X=20}(y)$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
3.

$$
\begin{array}{ccccccccccc}
x & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 \\
\hline f_{X \mid Y=18}(x) & 0 & 0 & 1 / 5 & 1 / 5 & 0 & 0 & 1 / 5 & 1 / 5 & 1 / 5 & 0
\end{array}
$$

Given a set of marginal distributions, there are many possible joint distributions.

- What do you notice about each of the following joint distributions?

Distribution 1
Distribution 2

y^{x}	1	2	3	
3	.16	.16	.08	.4
2	.16	.16	.08	.4
1	.08	.08	.04	.2
	.4	.4	.2	

Given a set of marginal distributions, there are many possible joint distributions.

- What do you notice about each of the following joint distributions?

Distribution 1
Distribution 2

y^{x}	1	2	3	
3	.4	0	0	.4
2	0	.4	0	.4
1	0	0	.2	.2
	.4	.4	.2	

y^{x}	1	2	3	
3	.16	.16	.08	.4
2	.16	.16	.08	.4
1	.08	.08	.04	.2
	.4	.4	.2	

1. Given $X=x$, you know what Y has to be (and vice versa).
2. Each $P(X=x, Y=y)$ is just $P(X=x) \cdot P(Y=y)$; i.e., X and Y have no influence on each other.

Joint Distributions
Marginal Distributions
Conditional
Distributions
Independence

A look at distribution 2

| x
 y | 1 | 2 | 3 | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | .16 | .16 | .08 | .4 |
| 2 | .16 | .16 | .08 | .4 |
| 1 | .08 | .08 | .04 | .2 |
| | .4 | .4 | .2 | |

Joint Distributions and Independence (Ch. 5.4)

Will Landau

The Discrete Case
Joint Distributions
Marginal Distributions
Conditional
Distributions
Independence
The Continuous

- Among just the cases when $X=1$:
- $Y=3$ every 16 out of $(16+16+8)=40$ times: i.e., with probability $\frac{16}{40}=0.4$
- Same with $Y=2$
- $Y=1$ every 8 out of $(16+16+8)=40$ times: i.e., with probability 0.2
- So pmf of Y given $X=1$ is the same as the marginal pmf of Y.

Independence

- Discrete random variables X and Y are independent (written $X \Perp Y$) if for all x and y,

$$
P(Y=y \mid X=x)=P(Y=y)
$$

where | means "given".

- If $X \Perp Y$, then:

$$
\begin{aligned}
P(Y=y \text { and } X=x) & =P(X=x) \cdot P(Y=y) \\
f(x, y) & =f_{X}(x) \cdot f_{Y}(y)
\end{aligned}
$$

- If X and Y are not only independent but also have the same marginal distribution, then they are independent and identically distributed, abbreviated iid.

Outline

Joint Distributions

 and Independence (Ch. 5.4)
Will Landau

The Discrete Case
Joint Distributions
Marginal Distributions
Conditional
Distributions
Independence
Joint Distributions Marginal Distributions Conditional Distributions Independence

The Continuous Case

Continuous joint distributions

- A joint probability density function (pdf) for two continuous random variables X and Y is a nonnegative function with:

$$
\begin{aligned}
\iint f(x, y) d x d y & =1 \\
P((X, Y) \in R) & =\iint_{R} f(x, y) d x d y
\end{aligned}
$$

where R is some region of \mathbb{R}^{2}.

Example: sales desk

Joint Distributions and Independence (Ch. 5.4)

Will Landau

The Discrete Case
Joint Distributions
Marginal Distributions

- $S=$ true excess time (over a 7.5 s threshold) required to complete the next sale
- $R=$ excess time measured with a stopwatch

$$
f(s, r)= \begin{cases}\frac{1}{16.5} e^{-s / 16.5} \frac{1}{\sqrt{2 \pi(0.25)}} e^{-(r-s)^{2} / 2(0.25)} & s>0 \\ 0 & \text { otherwise }\end{cases}
$$

$f(s, r)$ is valid.

Joint Distributions and Independence (Ch. 5.4)

Will Landau

The Discrete Case
Joint Distributions
Marginal Distributions
Conditional
Distributions
$\iint f(s, r) d s d r=\int_{0}^{\infty} \int_{-\infty}^{\infty} \frac{1}{16.5 \sqrt{2 \pi(0.25)}} e^{-(s / 16.5)-\left((r-s)^{2} / 2(0.25)\right)} d r d s$
independence
The Continuous
Case

$$
=\int_{0}^{\infty} \frac{1}{1.65} e^{-s / 16.5}\left\{\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi(0.25)}} e^{-(r-s)^{2} / 2(0.25)} d r\right\} d s
$$

$$
=\int_{0}^{\infty} \frac{1}{16.5} e^{-s / 16.5} d s
$$

$$
=1
$$

A look at $f(s, r)$

Joint Distributions

 and Independence (Ch. 5.4)
Will Landau

The Discrete Case
Joint Distributions
Marginal Distributions
Conditional
Distributions
Independence
The Continuous Case

Checking for measurement bias: P (measured excess time $>$ actual excess time)

$$
\begin{aligned}
P(R>S) & =\iint_{r>s} f(s, r) d s d r \\
& =\int_{0}^{\infty} \int_{s}^{\infty} f(s, r) d r d s \\
& =\int_{0}^{\infty} \frac{1}{16.5} e^{-s / 16.5}\left\{\int_{s}^{\infty} \frac{1}{\sqrt{2 \pi(0.25}} e^{-(r-s)^{2} / 2(0.25)} d r\right\} d s \\
& =\int_{0}^{\infty} \frac{1}{16.5} e^{-s / 16.5}\left\{\frac{1}{2}\right\} d s \\
& =\frac{1}{2}
\end{aligned}
$$

Checking for measurement bias: region of integration

The Discrete Case

Joint Distributions
Marginal Distributions
Conditional
Distributions
Independence
The Continuous
Case

Probability of taking too long

Joint Distributions

 and Independence (Ch. 5.4)
Will Landau

The Discrete Case
Joint Distributions
Marginal Distributions

$$
\begin{aligned}
P(S>20) & =\iint_{s>20} f(s, r) d r d s \\
& =\int_{20}^{\infty} \int_{-\infty}^{\infty} f(s, r) d r d s \\
& =\int_{20}^{\infty} \frac{1}{16.5} e^{-s / 16.5}\left\{\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi(0.25)}} e^{-(r-s)^{2} / s(0.25)}\right\} d s \\
& =\int_{20}^{\infty} e^{-s / 16.5} d s \\
& =e^{-20 / 16.5} \\
& \approx 0.30
\end{aligned}
$$

Probability of taking too long: region of

 integration

The Discrete Case
Joint Distributions
Marginal Distributions
Conditional
Distributions
Independence
The Continuous Case

Continuous marginal and conditional distributions

- For continuous random variables X and Y, the marginal distribution of X is:

$$
f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) d y
$$

- The conditional distribution of Y given $X=x$ is:

$$
f_{Y \mid X=x}(y)=\frac{f(x, y)}{f_{X}(x)}
$$

