Special Continuous Random Variables

Will Landau

Iowa State University

Feb 28, 2013

Special Continuous Random Variables

Will Landau

Overview

Normal Probabilities

Normal Quantiles

The Student *t* Distribution

The Chi-square Distribution

The F Distribution

Outline

Overview

Normal Probabilities

Normal Quantiles

The Student t Distribution

The Chi-square Distribution

The F Distribution

Special Notation of Quantiles

Special Continuous Random Variables

Will Landau

Overview

Normal Probabilities

Normal Quantiles

The Student *t* Distribution

The Chi-square Distribution

The F Distribution

The normal (Gaussian) distribution

• A random variable X is Normal(μ , σ^2) if its pdf is:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-(x-\mu)^2/2\sigma^2}$$

Using calculus, one can verify that:

•
$$E(X) = \mu$$

• Var
$$(X) = \sigma^2$$

X−μ/σ ~ N(0,1), where N(0,1) is the standard normal distribution (mean 0, variance 1).

Special Continuous Random Variables

Will Landau

Overview

Normal Probabilities

Normal Quantiles

The Student *t* Distribution

The Chi-square Distribution

The F Distribution

The standard normal distribution

 A standard normal random variable, usually called Z, has the pdf:

$$\phi(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}$$

- The standard normal pdf is usually denoted $\phi(z)$.
- The standard normal cdf is usually denoted $\Phi(z)$.

Special Continuous Random Variables

Will Landau

Overview

Normal Probabilities

Normal Quantiles

The Student *t* Distribution

The Chi-square Distribution

The F Distribution

Uses of the normal distribution

- A normal random variable is (often) a finite average of many repeated, independent, identical trials.
- Examples:
 - Mean width of the next 50 hexamine pellets.
 - Mean height of the next 30 students.
 - Your SAT score.
 - Total % yield of the next 40 runs of a chemical process.
 - The next blood pressure reading.
 - Several kinds of measurement error.
 - Corrosion resistance of carbon/carbon composites.

Special Continuous Random Variables

Will Landau

Overview

Normal Probabilities

Normal Quantiles

The Student *t* Distribution

The Chi-square Distribution

The F Distribution

A look at the normal density: a bell curve

Special Continuous Random Variables

Will Landau

Overview

Normal Probabilities

Normal Quantiles

The Student *t* Distribution

The Chi-square Distribution

The F Distribution

As usual, areas denote probabilities

Special Continuous Random Variables

Will Landau

Overview

Normal Probabilities

Normal Quantiles

The Student *t* Distribution

The Chi-square Distribution

The F Distribution

The relationship between normal probabilities and standard normal probabilities.

Special Continuous Random Variables

Will Landau

Overview

Normal Probabilities

Normal Quantiles

The Student *t* Distribution

The Chi-square Distribution

The F Distribution

Outline

Overview

Normal Probabilities

Normal Quantiles

The Student t Distribution

The Chi-square Distribution

The F Distribution

Special Notation of Quantiles

Special Continuous Random Variables

Will Landau

Overviev

Normal Probabilities

Normal Quantiles

The Student *t* Distribution

The Chi-square Distribution

The F Distribution

Normal probabilities

Since Z = X-µ/σ is standard normal probability values from X can be expressed as:

$$P(a \le X \le b) = P\left(\frac{a-\mu}{\sigma} \le Z \le \frac{b-\mu}{\sigma}\right)$$
$$= \int_{(a-\mu)/\sigma}^{(b-\mu)/\sigma} \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz$$

- Unfortunately, the integral cannot be evaluated analytically. Instead, we use either:
 - A computer.
 - A standard normal probability table like the one in Table B.3 in Vardeman and Jobe.

Special Continuous Random Variables

Will Landau

Overview

Normal Probabilities

Normal Quantiles

The Student *t* Distribution

The Chi-square Distribution

The F Distribution

Example: baby food

J. Fisher, in his article Computer Assisted Net Weight Control (Quality Progress, June 1983), discusses the filling of food containers with strained plums with tapioca by weight. The mean of the values portrayed is about 137.2 g, the standard deviation is about 1.6 g, and data look bell-shaped.

• Let
$$W$$
 = the next fill weight. Then,
 $W \sim N(\mu = 137.2, \sigma^2 = (1.6)^2).$

Let's find the probability that the next jar contains less food by mass than it's supposed to (declared weight = 135.05 g).

$$P(W < 135.0) = P\left(\frac{W - 137.2}{1.6} < \frac{135.05 - 137.2}{1.6}\right)$$
$$= P(Z < -1.34)$$
$$= \Phi(-1.34)$$

The approximate value of Φ(-1.34) is found to be 0.0901 in Table B.3.

© Will Landau

Special Continuous Random Variables

Will Landau

Overview

Normal Probabilities

Normal Quantiles

The Student *t* Distribution

The Chi-square Distribution

The F Distribution

Special Notation of Quantiles

Feb 28, 2013 11 / 46

The standard normal table

Standard Normal Cumulative Probabilities

			đ	$\Phi(z) = \int_{-\infty}^{z}$	$\frac{1}{\sqrt{2\pi}}$ ex	$\left(-\frac{t^2}{2}\right)$	dt			
z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0003
-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	.0005	.0005
-3.1	.0010	.0009	.0009	.0009	.0008	.0008	.0008	.0008	.0007	.0007
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010
-2.9	.0019	.0018	.0018	.0017	.0016	.0016	.0015	.0015	.0014	.0014
-2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019
-2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0026
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036
-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048
-2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
-2.4	.0082	.0104	.0102	.0075	.0075	.0071	.0009	.0089	.0087	.0084
-2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
-2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
-2.0	.0228	.0222	.0217	.0212	.0102	.0202	.0197	.0192	.0188	.0143
-1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
-1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
-1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
-1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
-1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
-1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681
-1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
-1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
-1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
-1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379

Special Continuous Random Variables

Will Landau

Overview

Normal Probabilities

Normal Quantiles

The Student *t* Distribution

The Chi-square Distribution

The F Distribution

Your turn: using the standard normal table, calculate the following.

- 1. $P(X \le 3), X \sim N(2, 64)$
- 2. $P(X > 7), X \sim N(6, 9)$

3.
$$P(|X-1| > 0.5), X \sim N(2,4)$$

4. P(X is within 2 standard deviations of its mean.) $X \sim N(\mu, \sigma^2)$ Special Continuous Random Variables

Will Landau

Overview

Normal Probabilities

Normal Quantiles

The Student *t* Distribution

The Chi-square Distribution

The F Distribution

1.
$$P(X \le 3), X \sim N(2, 64)$$

$$P(X \le 3) = P\left(Z \le \frac{3-2}{\sqrt{64}} = 0.125\right)$$
$$= \Phi(0.125)$$
$$= 0.5478 \text{ from the standard normal table}$$

Special Continuous Random Variables

Will Landau

Overview

Normal Probabilities

Normal Quantiles

The Student *t* Distribution

The Chi-square Distribution

The F Distribution

2.
$$P(X > 7), X \sim N(6, 9)$$

 $P(X > 7) = P\left(Z > \frac{7-6}{\sqrt{9}} = 0.33\right)$
 $= 1 - P(Z \le 0.33)$
 $= 1 - \Phi(0.33)$
 $= 1 - 0.6293$ from the standard normal table
 $= 0.3707$

Special Continuous Random Variables

Will Landau

Overview

Normal Probabilities

Normal Quantiles

The Student *t* Distribution

The Chi-square Distribution

The F Distribution

$$P(|X - 1| > 0.5), X \sim N(2, 4)$$

$$P(|X - 1| > 0.5) = P(X - 1 > 0.5 \text{ or } X - 1 < -0.5)$$

$$= P(X - 1 > 0.5) + P(X - 1 < -0.5)$$

$$= P(X > 1.5) + P(X < 0.5)$$

$$= P\left(\frac{X - 2}{2} > \frac{1.5 - 2}{2}\right) + P\left(\frac{X - 2}{2} < \frac{0.5 - 2}{2}\right)$$

$$= P(Z > -0.25) + P(Z < -0.75)$$

$$= 1 - P(Z \le -0.25) + P(Z \le -0.75)$$

$$= 1 - 0.4013 + 0.2266 \text{ from the standard normal table}$$

$$= 0.8253$$

Special Continuous Random Variables

Will Landau

Overview

Normal Probabilities

Normal Quantiles

The Student *t* Distribution

The Chi-square Distribution

The F Distribution

Special Notation of Quantiles

3.

4. $P(X \text{ is within 2 standard deviations of its mean.}) X \sim N(\mu, \sigma^2)$

$$P(|X - \mu| < 2\sigma) = P(-2\sigma < X - \mu < 2\sigma)$$

= $P(\mu - 2\sigma < X < \mu + 2\sigma)$
= $P\left(\frac{(\mu - 2\sigma) - \mu}{\sigma} < \frac{X - \mu}{\sigma} < \frac{(\mu + 2\sigma) - \mu}{\sigma}\right)$
= $P(-2 < Z < 2)$
= $P(Z < 2) - P(Z < -2)$
= $\Phi(2) - \Phi(-2)$
= $0.9773 - 0.0228$
= 0.9545

Special Continuous Random Variables

Will Landau

Overview

Normal Probabilities

Normal Quantiles

The Student *t* Distribution

The Chi-square Distribution

The F Distribution

Outline

Overview

Normal Probabilities

Normal Quantiles

The Student t Distribution

The Chi-square Distribution

The F Distribution

Special Notation of Quantiles

Special Continuous Random Variables

Will Landau

Overview

Normal Probabilities

Normal Quantiles

The Student *t* Distribution

The Chi-square Distribution

The F Distribution

Normal quantiles

- I can find standard normal quantiles by using the standard normal tabl:e in reverse.
- Example: for the jar weights $W \sim (137.2, 1.6^2)$, I will find Q(0.1)

$$egin{aligned} 0.1 &= P(X \leq Q(0.1)) \ &= P\left(Z \leq rac{Q(0.1) - 137.2}{1.6}
ight) \ &= \Phi\left(rac{Q(0.1) - 137.2}{1.6}
ight) \ &= rac{Q(0.1) - 137.2}{1.6} \ Q(0.1) &= rac{Q(0.1) - 137.2}{1.6} \ & Q(0.1) = 137.2 + 1.6 \cdot \Phi^{-1}(0.1) \end{aligned}$$

 $\Phi^{-1}(0.1) = -1.28$ from the standard normal table. Hence:

Φ

$$Q(0.1) = 137.2 + 1.6(-1.28)$$

= 135.152

Special Continuous Random Variables

Will Landau

Overview

Normal Probabilities

Normal Quantiles

The Student *t* Distribution

The Chi-square Distribution

The F Distribution

Finding Q(0.1)

Table B.3 Standard Normal Cumulative Probabilities

(c) Will Landau

$\Phi(z) =$	$\int_{-\infty}^{z}$	$\frac{1}{\sqrt{2\pi}}$	exp	$\left(-\frac{t^2}{2}\right)$	dt
-------------	----------------------	-------------------------	-----	-------------------------------	----

	z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
	-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002
	-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0003
	-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	.0005	.0005
	-3.1	.0010	.0009	.0009	.0009	.0008	.0008	.0008	.0008	.0007	.0007
	-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010
	-2.9	.0019	.0018	.0018	.0017	.0016	.0016	.0015	.0015	.0014	.0014
	-2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019
	-2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0026
	-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036
	-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048
	-2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
	-2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
	-2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
	-2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
	-2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
	-1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
	-1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
	-1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
	-1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
	-1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
	-1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681
	-1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
	-1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
ĺ	-1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
	-1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379

Iowa State University

Special Continuous Random Variables

Will Landau

Overview

Normal Probabilities

Normal Quantiles

The Student *t* Distribution

The Chi-square Distribution

The F Distribution

Special Notation of Quantiles

20 / 46

Your turn: calculate the following:

- 1. Q(0.95) of $X \sim N(9,3)$
- 2. c such that P(|X-2| > c) = 0.01, $X \sim N(2,4)$
- 3. c such that $P(|X \mu| < \sigma c) = 0.95$, $X \sim N(\mu, \sigma^2)$

Special Continuous Random Variables

Will Landau

Overview

Normal ^Drobabilities

Normal Quantiles

The Student *t* Distribution

The Chi-square Distribution

The F Distribution

Answers

1. Q(0.95) for $X \sim N(9,3)$

$$0.95 = P(X \le Q(0.95))$$

= $P\left(\frac{X-9}{\sqrt{3}} < \frac{Q(0.95)-9}{\sqrt{3}}\right)$
= $P\left(Z < \frac{Q(0.95)-9}{\sqrt{3}}\right)$
 $0.95 = \Phi\left(\frac{Q(0.95)-9}{\sqrt{3}}\right)$
 $\Phi^{-1}(0.95) = \frac{Q(0.95)-9}{\sqrt{3}}$
 $Q(0.95) = \sqrt{3} \cdot \Phi^{-1}(0.95) + 9$
= $\sqrt{3} \cdot (1.64) + 9$ (from the std. normal table)
= 11.84

Special Continuous Random Variables

Will Landau

Overview

Normal Probabilities

Normal Quantiles

The Student *t* Distribution

The Chi-square Distribution

The F Distribution

Answers

2. c such that
$$P(|X-2| > c) = 0.01$$
, $X \sim N(2.1, 4)$

$$0.01 = P(|X - 2| > c)$$

$$= P(X - 2 > c \text{ or } X - 2 < -c)$$

$$= P(X - 2 > c) + P(X - 2 < -c)$$

$$= P(X - 2 > c) + P(X - 2 < -c)$$

$$= P\left(\frac{X - 2}{2} > \frac{c}{2}\right) + P\left(\frac{X - 2}{2} < -\frac{c}{2}\right)$$

$$= P\left(Z > \frac{c}{2}\right) + P\left(Z < -\frac{c}{2}\right)$$

$$= P\left(Z < -\frac{c}{2}\right) + P\left(Z < -\frac{c}{2}\right) \quad (\phi(z) \text{ is symmetric about 0})$$

$$= 2P\left(Z < -\frac{c}{2}\right)$$

$$0.01 = 2\Phi(-c/2)$$

$$0.005 = \Phi(-c/2)$$

$$\Phi^{-1}(0.005) = -c/2$$

$$c = -2\Phi^{-1}(0.005)$$

$$= -2 \cdot (-2.58) \quad (\text{using the standard normal table})$$

$$= 5.16$$

Special Continuous

Random Variables

Answers

3. c such that
$$P(|X - \mu| < \sigma c) = 0.95, X \sim N(\mu, \sigma^2)$$

$$0.95 = P(|X - \mu| < \sigma c)$$

= $P(-\sigma c < X - \mu < \sigma c)$
= $P\left(-c < \frac{X - \mu}{\sigma} < c\right)$
= $P(-c < Z < c)$
= $P(Z < c) - P(Z < -c)$
= $(1 - P(Z > c)) - P(Z < -c)$
= $(1 - P(Z < -c)) - P(Z < -c)$
(since $\phi(z)$ is symmetric about 0)
= $1 - 2P(Z < -c)$
0.95 = $1 - 2\Phi(-c)$
0.05 = $2\Phi(-c)$
 $c = -\Phi^{-1}(0.025)$
= $-(-1.96)$ from the standard normal table
= 1.96

Special Continuous Random Variables

Will Landau

Overview

Normal Probabilities

Normal Quantiles

The Student *t* Distribution

The Chi-square Distribution

The F Distribution

Outline

Overview

Normal Probabilities

Normal Quantiles

The Student t Distribution

The Chi-square Distribution

The F Distribution

Special Notation of Quantiles

Special Continuous Random Variables

Will Landau

Overviev

Normal Probabilities

Normal Quantiles

The Student *t* Distribution

The Chi-square Distribution

The F Distribution

The Student t distribution

A random variable T has a t_ν distribution – that is, a t distribution with ν degrees of freedom – if its pdf is:

$$f(t) = \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)} \frac{1}{(\nu\pi)^{\frac{1}{2}}} \left(1 + \frac{t^2}{\nu}\right)^{-\frac{\nu+1}{2}}, \quad -\infty < t < \infty$$

- We use the t table (Table B.4 in Vardeman and Jobe) to calculate quantiles and probabilities.
- Like the standard normal distribution, the t distribution is mound-shaped and symmetric about 0.
- ▶ The *t* distribution has fatter tails than the normal, but approaches the shape of the normal as $\nu \to \infty$

Special Continuous Random Variables

Will Landau

Overview

Normal Probabilities

Normal Quantiles

The Student *t* Distribution

The Chi-square Distribution

The F Distribution

Comparing t_nu to N(0,1)

Special Continuous Random Variables

Will Landau

Overview

Normal Probabilities

Normal Quantiles

The Student *t* Distribution

The Chi-square Distribution

The F Distribution

Comparing t_nu to N(0,1)

Special Continuous Random Variables

Will Landau

Overview

Normal Probabilities

Normal Quantiles

The Student *t* Distribution

The Chi-square Distribution

The F Distribution

Special Notation of Quantiles

Feb 28, 2013 28 / 46

Comparing t_nu to N(0,1)

Special Continuous Random Variables

Will Landau

Overview

Normal Probabilities

Normal Quantiles

The Student *t* Distribution

The Chi-square Distribution

The F Distribution

Special Notation of Quantiles

Feb 28, 2013 29 / 46

Comparing t_nu to N(0,1)

Special Continuous Random Variables

Will Landau

Overview

Normal Probabilities

Normal Quantiles

The Student *t* Distribution

The Chi-square Distribution

The F Distribution

Find probabilities and quantiles of t_{ν} with the t table.

• Say
$$T \sim t_5$$
. $P(T \le 1.476) = 0.9$

Table B.4

t Distribution Quantiles

ν	Q(.9)	Q(.95)	Q(.975)	Q(.99)	Q(.995)	Q(.999)	Q(.9995)
1	3.078	6.314	12.706	31.821	63.657	318.317	636.607
2	1.886	2.920	4.303	6.965	9.925	22.327	31.598
3	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	1.476	2.015	2.571	3.365	4.032	5.893	6.869

You can find quantiles labeled in the top row.

Special Continuous Random Variables

Will Landau

Overview

Normal ^Drobabilities

Normal Quantiles

The Student *t* Distribution

The Chi-square Distribution

The F Distribution

Outline

Overview

Normal Probabilities

Normal Quantiles

The Student t Distribution

The Chi-square Distribution

The F Distribution

Special Notation of Quantiles

Special Continuous Random Variables

Will Landau

Overview

Normal Probabilities

Normal Quantiles

The Student *t* Distribution

The Chi-square Distribution

The F Distribution

The chi-square distribution

 A random variable S ~ χ²_ν (is chi-square with ν degrees of freedom) if its pdf is:

$$f(x) = \begin{cases} 0 & : x \le 0\\ \frac{1}{\Gamma(\nu/2)2^{\nu/2}} \cdot x^{\nu/2 - 1} \cdot e^{-x/2} & : 0 < x < \infty \end{cases}$$

- Use Table B.5 in Vardeman and Jobe to find chisquare probabilities and quantiles.
- A chi-square random variable is the sum of ν independent standard normal random variables.
- A chi-suqare distribution is not symmetric.

Special Continuous Random Variables

Will Landau

Overview

Normal Probabilities

Normal Quantiles

The Student *t* Distribution

The Chi-square Distribution

The F Distribution

A look at the chi-square density

Chisquare_1 pdf 0.6 0.5 0.4 (x) 0.3 0.2 0.1 0.0 10 0 5 15 20 25 30 33 х

© Will Landau

Feb 28, 2013 34 / 46

Special Continuous Random Variables

Will Landau

Overview

Normal Probabilities

Normal Quantiles

The Student *t* Distribution

The Chi-square Distribution

The F Distribution

A look at the chi-square denstiy

Special Continuous

Random Variables

A look at the chi-square density

Probabilities

Special Continuous

Random Variables Will Landau

Normal Quantiles

The Student *t* Distribution

The Chi-square Distribution

The F Distribution

Special Notation of Quantiles

Feb 28, 2013 36 / 46

A look at the chi-square density

Special Continuous Random Variables

Will Landau

Overviev

Normal Probabilities

Normal Quantiles

The Student *t* Distribution

The Chi-square Distribution

The F Distribution

Use Table B.5 to find chi-square probabilities and quantiles.

• Q(0.9) of χ_6^2 is 10.645.

Table B.5 Chi-Square Distribution Quantiles

ν	Q(.005)	Q(.01)	Q(.025)	Q(.05)	Q(.1)	Q(.9)	Q(.95)	Q(.975)	Q(.99)	Q(.995)
1	0.000	0.000	0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.879
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.833	15.086	16.750
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18.548

Special Continuous Random Variables

Will Landau

Overview

Normal ^Probabilities

Normal Quantiles

The Student *t*

The Chi-square Distribution

The F Distribution

Outline

Overview

Normal Probabilities

Normal Quantiles

The Student t Distribution

The Chi-square Distribution

The F Distribution

Special Notation of Quantiles

Special Continuous Random Variables

Will Landau

Overview

Normal Probabilities

Normal Quantiles

The Student *t* Distribution

The Chi-square Distribution

The F Distribution

The F distribution

• X has an F_{ν_1,ν_2} distribution if it has pdf:

$$f(x) = \begin{cases} 0 & : x \le 0\\ \frac{\Gamma\left(\frac{\nu_1 + \nu_2}{2}\right)}{\Gamma\left(\frac{\nu_1}{2}\right)\Gamma\left(\frac{\nu_2}{2}\right)} \cdot \left(\frac{\nu_1}{\nu_2}\right)^{\nu_1/2} \frac{x^{\nu_1/2 - 1}}{[1 + (\nu_1/\nu_2)x]^{(\nu_1 + \nu_2)/2}} : 0 < x < \infty \end{cases}$$

- An F_{ν1,ν2} random variable is a χ²_{ν1} RV divided by an independent χ²_{ν2} RV. That's why ν1 is the numerator degrees of freedom and ν2 is the denominator degrees of freedom.
- Use Tables B.6A-B.6E to find probabilities and quantiles.

Special Continuous Random Variables

Will Landau

Overview

Normal Probabilities

Normal Quantiles

The Student *t* Distribution

The Chi-square Distribution

The F Distribution

A look at the F density

F_(1,1) pdf

Special Continuous Random Variables

Will Landau

Overview

Normal Probabilities

Normal Quantiles

The Student *t* Distribution

The Chi-square Distribution

The F Distribution

A look at the F density

F_(5,1) pdf

Special Continuous Random Variables

Will Landau

Overview

Normal Probabilities

Normal Quantiles

The Student *t* Distribution

The Chi-square Distribution

The F Distribution

Special Notation of Quantiles

Feb 28, 2013 42 / 46

A look at the F density

F_(25,40) pdf

Special Continuous Random Variables

Will Landau

Overview

Normal Probabilities

Normal Quantiles

The Student *t*

The Chi-square Distribution

The F Distribution

Find probabilities and quantiles of the F distribution with Tables B.6A-B.6E

• The 0.99 quantile of the $F_{4,5}$ distribution is 11.39.

Table B.6D F Distribution 99 Quantiles												
s of		ν_1 (Numerator Degrees of Freedom)										
m)	1	2	3	4	5	6	7	8	9	10		
1	4052	4999	5403	5625	5764	5859	5929	5981	6023	6055		
2	98.51	99.00	99.17	99.25	99.30	99.33	99.35	99.38	99.39	99.40		
3	34.12	30.82	29.46	28.71	28.24	27.91	27.67	27.49	27.35	27.23		
4	21.20	18.00	16 69	15.98	15.52	15.21	14 98	14 80	14.66	14.55		
5	16.26	13.27	12.06	11.39	10.97	10.67	10.46	10.29	10.16	10.05		
	inator s of m) 1 2 3 4	inator s of m) 1 1 4052 2 98.51 3 34.12 4 21.20	inator s of 1 4052 4999 2 98.51 99.00 3 34.12 30.82 4 21.20 18.00	inator s of m) 1 2 3 1 4052 4999 5403 2 98.51 99.00 99.17 3 34.12 30.82 29.46 4 21.20 18.00 16.69	inator s of m) 1 2 3 4 1 4052 4999 5403 5625 2 98.51 99.00 99.17 99.25 3 34.12 30.82 29.26 28.71 4 21.20 18.00 16.69 15.98	inator s of m) ν, (Numerator Dep 1 1 2 3 4 5 1 4052 4999 5403 5625 5764 2 98.51 99.00 99.17 99.25 99.30 3 34.12 30.82 29.46 28.71 28.24 4 21.20 18.00 16.69 15.98 15.52	inator s of m) 1 2 3 4 5 6 1 4052 4999 5403 5625 5764 5859 2 98.51 99.00 99.17 99.25 99.30 99.33 3 34.12 30.82 29.46 28.71 28.24 27.91 4 21.20 18.00 16.69 15.98 15.52 15.12	inator s of m) 1 2 3 4 5 6 7 1 4052 4999 5403 5625 5764 5859 5929 2 98.51 99.00 99.17 99.25 99.30 99.33 99.35 3 34.12 30.82 29.46 28.71 28.24 7.79.1 27.67 4 21.20 18.00 16.69 15.98 15.52 15.21 14.98	inator s of m) 1 2 3 4 5 6 7 8 1 4052 4999 5403 5625 5764 5859 5929 5981 2 98.51 99.00 99.17 99.25 99.30 99.33 99.35 99.38 3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80	inator s of m) 1 2 3 4 5 6 7 8 9 1 4052 4999 5403 5625 5764 5859 5929 5981 6023 2 98.51 99.00 99.17 99.25 99.30 99.33 99.35 99.38 99.33 3 34.12 30.82 29.46 28.71 27.49 27.47 27.49 27.35 4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66		

Special Continuous Random Variables

Will Landau

Overview

Normal Probabilities

Normal Quantiles

The Student *t* Distribution

The Chi-square Distribution

The F Distribution

Outline

Overview

Normal Probabilities

Normal Quantiles

The Student t Distribution

The Chi-square Distribution

The F Distribution

Special Notation of Quantiles

Special Continuous Random Variables

Will Landau

Overview

Normal Probabilities

Normal Quantiles

The Student *t* Distribution

The Chi-square Distribution

The F Distribution

Special notation of quantiles

- 1. Q(p) for N(0, 1) is often denoted z_p .
- 2. Q(p) for t_{ν} is often denoted $t_{\nu,p}$.
- 3. Q(p) for χ^2_{ν} is often denoted $\chi^2_{\nu,p}$.
- 4. Q(p) for F_{ν_1,ν_2} is often denoted $F_{\nu_1,\nu_2,p}$.

Will Landau

Overview

Normal Probabilities

Normal Quantiles

The Student *t* Distribution

The Chi-square Distribution

The F Distribution