Special Continuous
Random Variables
Will Landau

Overview
Normal
Probabilities

Special Continuous Random Variables

Will Landau
Iowa State University

Normal Quantiles
The Student t
Distribution
The Chi-square
Distribution
The F Distribution
Special Notation
of Quantiles
Feb 28, 2013

Outline

Special Continuous
Random Variables
Will Landau

Overview

Normal Probabilities

Overview
Normal
Probabilities
Normal Quantiles
The Student t
Distribution

Normal Quantiles

The Chi-square
Distribution
The Student t Distribution
The F Distribution
Special Notation
of Quantiles
The Chi-square Distribution

The F Distribution

Special Notation of Quantiles

The normal (Gaussian) distribution

Special Continuous Random Variables

Will Landau

Overview
Normal
Probabilities
Normal Quantiles

$$
f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}
$$

The Student t
Distribution
The Chi-square
Distribution

- Using calculus, one can verify that:
- $E(X)=\mu$
- $\operatorname{Var}(X)=\sigma^{2}$
- $\frac{X-\mu}{\sigma} \sim N(0,1)$, where $N(0,1)$ is the standard normal distribution (mean 0 , variance 1).

The standard normal distribution

 Random Variables
Will Landau

Overview
Normal
Probabilities

- A standard normal random variable, usually called Z, has the pdf:

$$
\phi(z)=\frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2}
$$

Normal Quantiles
The Student t
Distribution
The Chi-square
Distribution
The F Distribution
Special Notation of Quantiles

- The standard normal pdf is usually denoted $\phi(z)$.
- The standard normal cdf is usually denoted $\Phi(z)$.

Uses of the normal distribution

- A normal random variable is (often) a finite average of many repeated, independent, identical trials.
- Examples:
- Mean width of the next 50 hexamine pellets.
- Mean height of the next 30 students.
- Your SAT score.
- Total \% yield of the next 40 runs of a chemical process.
- The next blood pressure reading.
- Several kinds of measurement error.
- Corrosion resistance of carbon/carbon composites.

A look at the normal density: a bell curve

Special Continuous

 Random VariablesWill Landau

Overview
Normal
Probabilities

As usual, areas denote probabilities

Special Continuous

 Random VariablesWill Landau

Overview
Normal
Probabilities

The relationship between normal probabilities and standard normal probabilities.

Special Continuous Random Variables

Will Landau

Overview
Normal
Probabilities

Normal

Outline

Special Continuous
Random Variables
Will Landau

Overview
Normal
Probabilities

Normal Probabilities

Normal Quantiles

The Student t Distribution
The F Distribution
Special Notation
of Quantiles

The Chi-square Distribution

The F Distribution

Special Notation of Quantiles

Normal probabilities

- Since $Z=\frac{X-\mu}{\sigma}$ is standard normal probability values from X can be expressed as:

$$
\begin{aligned}
P(a \leq X \leq b) & =P\left(\frac{a-\mu}{\sigma} \leq Z \leq \frac{b-\mu}{\sigma}\right) \\
& =\int_{(a-\mu) / \sigma}^{(b-\mu) / \sigma} \frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2} d z
\end{aligned}
$$

Overview

Normal
Probabilities
Normal Quantiles
The Student t Distribution

The Chi-square
Distribution
The F Distribution
Special Notation of Quantiles

- Unfortunately, the integral cannot be evaluated analytically. Instead, we use either:
- A computer.
- A standard normal probability table like the one in Table B. 3 in Vardeman and Jobe.

Example: baby food

- J. Fisher, in his article Computer Assisted Net Weight Control (Quality Progress, June 1983), discusses the filling of food containers with strained plums with tapioca by weight.
The mean of the values portrayed is about 137.2 g , the standard deviation is about 1.6 g , and data look bell-shaped.
- Let $W=$ the next fill weight. Then, $W \sim N\left(\mu=137.2, \sigma^{2}=(1.6)^{2}\right)$.
- Let's find the probability that the next jar contains less food by mass than it's supposed to (declared weight $=135.05 \mathrm{~g}$).

Special Continuous Random Variables

Will Landau

Overview

Normal
Probabilities
Normal Quantiles
The Student t Distribution

The Chi-square Distribution

The F Distribution
Special Notation of Quantiles

$$
\begin{aligned}
P(W<135.0) & =P\left(\frac{W-137.2}{1.6}<\frac{135.05-137.2}{1.6}\right) \\
& =P(Z<-1.34) \\
& =\Phi(-1.34)
\end{aligned}
$$

- The approximate value of $\Phi(-1.34)$ is found to be 0.0901 in Table B.3.

The standard normal table

Special Continuous Random Variables

Will Landau

Overview
Normal
Probabilities
Normal Quantiles
The Student t
Distribution
The Chi-square
Distribution
The F Distribution
Special Notation of Quantiles

Your turn: using the standard normal table, calculate the following.

Normal
Probabilities
Normal Quantiles
The Student t
Distribution

1. $P(X \leq 3), X \sim N(2,64)$
2. $P(X>7), X \sim N(6,9)$
3. $P(|X-1|>0.5), X \sim N(2,4)$
4. $P(X$ is within 2 standard deviations of its mean. $)$ $X \sim N\left(\mu, \sigma^{2}\right)$

Answers: normal probabilities

Special Continuous

 Random VariablesWill Landau

Overview
Normal
Probabilities
Normal Quantiles

1. $\quad P(X \leq 3), X \sim N(2,64)$

$$
\begin{aligned}
P(X \leq 3) & =P\left(Z \leq \frac{3-2}{\sqrt{64}}=0.125\right) \\
& =\Phi(0.125) \\
& =0.5478 \text { from the standard normal table }
\end{aligned}
$$

The Student t
Distribution

The Chi-square Distribution

The F Distribution
Special Notation of Quantiles

Answers: normal probabilities

Special Continuous

 Random VariablesWill Landau

Overview
Normal
Probabilities
2. $P(X>7), X \sim N(6,9)$

$$
\begin{aligned}
P(X>7) & =P\left(Z>\frac{7-6}{\sqrt{9}}=0.33\right) \\
& =1-P(Z \leq 0.33) \\
& =1-\Phi(0.33) \\
& =1-0.6293 \text { from the standard normal table } \\
& =0.3707
\end{aligned}
$$

Answers: normal probabilities

Special Continuous Random Variables

Will Landau

Overview

Normal
Probabilities
Normal Quantiles

$$
\begin{aligned}
P(|X-1|>0.5) & =P(X-1>0.5 \text { or } X-1<-0.5) \\
& =P(X-1>0.5)+P(X-1<-0.5) \\
& =P(X>1.5)+P(X<0.5) \\
& =P\left(\frac{X-2}{2}>\frac{1.5-2}{2}\right)+P\left(\frac{X-2}{2}<\frac{0.5-2}{2}\right) \\
& =P(Z>-0.25)+P(Z<-0.75) \\
& =1-P(Z \leq-0.25)+P(Z \leq-0.75) \\
& =1-\Phi(-0.25)+\Phi(-0.75) \\
& =1-0.4013+0.2266 \text { from the standard normal table } \\
& =0.8253
\end{aligned}
$$

Answers: normal probabilities

Special Continuous Random Variables

Will Landau

Overview

Normal Probabilities

Normal Quantiles

$$
\begin{aligned}
P(|X-\mu|<2 \sigma) & =P(-2 \sigma<X-\mu<2 \sigma) \\
& =P(\mu-2 \sigma<X<\mu+2 \sigma) \\
& =P\left(\frac{(\mu-2 \sigma)-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{(\mu+2 \sigma)-\mu}{\sigma}\right) \\
& =P(-2<Z<2) \\
& =P(Z<2)-P(Z<-2) \\
& =\Phi(2)-\Phi(-2) \\
& =0.9773-0.0228 \\
& =0.9545
\end{aligned}
$$

Outline

Special Continuous
Random Variables
Will Landau

Overview
Normal
Probabilities

Normal Probabilities

Normal Quantiles
The Student t
Distribution

Normal Quantiles

The Chi-square
Distribution
The Student t Distribution
The F Distribution
Special Notation
of Quantiles
The Chi-square Distribution

The F Distribution

Special Notation of Quantiles

Normal quantiles

Special Continuous Random Variables

Will Landau

- I can find standard normal quantiles by using the standard normal tabl:e in reverse.
- Example: for the jar weights $W \sim\left(137.2,1.6^{2}\right)$, I will find $Q(0.1)$

$$
\begin{aligned}
0.1 & =P(X \leq Q(0.1)) \\
& =P\left(z \leq \frac{Q(0.1)-137.2}{1.6}\right) \\
& =\Phi\left(\frac{Q(0.1)-137.2}{1.6}\right) \\
\Phi^{-1}(0.1) & =\frac{Q(0.1)-137.2}{1.6} \\
Q(0.1) & =137.2+1.6 \cdot \Phi^{-1}(0.1)
\end{aligned}
$$

$\Phi^{-1}(0.1)=-1.28$ from the standard normal table. Hence:

$$
\begin{aligned}
Q(0.1) & =137.2+1.6(-1.28) \\
& =135.152
\end{aligned}
$$

Finding $Q(0.1)$

Special Continuous Random Variables

Will Landau

Overview
Normal
Probabilities
Normal Quantiles
The Student t
Distribution
The Chi-square
Distribution
The F Distribution
Special Notation of Quantiles

Table B. 3
Standard Normal Cumulative Probabilities

$$
\Phi(z)=\int_{-\infty}^{z} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{t^{2}}{2}\right) d t
$$

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0003
-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	.0005	.0005
-3.1	.0010	.0009	.0009	.0009	.0008	.0008	.0008	.0008	.0007	.0007
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010
-2.9	.0019	.0018	.0018	.0017	.0016	.0016	.0015	.0015	.0014	.0014
-2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019
-2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0026
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036
-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048
-2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
-2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
-2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
-2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
-2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
-1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
-1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
-1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
-1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
-1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
-1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681
-1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
-1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
-1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
-1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379

Your turn: calculate the following:

Special Continuous Random Variables

Will Landau

Overview
Normal
Probabilities
Normal Quantiles
The Student t
Distribution

1. $\quad Q(0.95)$ of $X \sim N(9,3)$
2. c such that $P(|X-2|>c)=0.01, X \sim N(2,4)$
3. c such that $P(|X-\mu|<\sigma c)=0.95, X \sim N\left(\mu, \sigma^{2}\right)$

The Chi-square
Distribution
The F Distribution
Special Notation of Quantiles

Answers

Special Continuous
Random Variables
Will Landau

1. $Q(0.95)$ for $X \sim N(9,3)$

$$
\begin{aligned}
0.95 & =P(X \leq Q(0.95)) \\
& =P\left(\frac{X-9}{\sqrt{3}}<\frac{Q(0.95)-9}{\sqrt{3}}\right) \\
& =P\left(Z<\frac{Q(0.95)-9}{\sqrt{3}}\right) \\
0.95 & =\Phi\left(\frac{Q(0.95)-9}{\sqrt{3}}\right) \\
\Phi^{-1}(0.95) & =\frac{Q(0.95)-9}{\sqrt{3}} \\
Q(0.95) & =\sqrt{3} \cdot \Phi^{-1}(0.95)+9 \\
& =\sqrt{3} \cdot(1.64)+9 \quad \text { (from the std. normal table) } \\
& =11.84
\end{aligned}
$$

Answers

Special Continuous
Random Variables
Will Landau

Overview

Normal
Probabilities
Normal Quantiles
The Student t
Distribution
The Chi-square
Distribution
The F Distribution
Special Notation of Quantiles

Answers

Special Continuous
Random Variables
Will Landau
3. c such that $P(|X-\mu|<\sigma c)=0.95, X \sim N\left(\mu, \sigma^{2}\right)$

$$
\begin{aligned}
0.95= & P(|X-\mu|<\sigma c) \\
= & P(-\sigma c<X-\mu<\sigma c) \\
= & P\left(-c<\frac{X-\mu}{\sigma}<c\right) \\
= & P(-c<Z<c) \\
= & P(Z<c)-P(Z<-c) \\
= & (1-P(Z>c))-P(Z<-c) \\
= & (1-P(Z<-c))-P(Z<-c) \\
& \quad(\text { since } \phi(z) \text { is symmetric about } 0) \\
= & 1-2 P(Z<-c) \\
0.95= & 1-2 \Phi(-c) \\
0.05= & 2 \Phi(-c) \\
c= & -\Phi^{-1}(0.025) \\
= & -(-1.96) \quad \text { from the standard normal table } \\
= & 1.96
\end{aligned}
$$

Outline

Special Continuous
Random Variables
Will Landau

Overview
Normal
Probabilities

Normal Probabilities

Normal Quantiles
The Student t
Distribution

Normal Quantiles

The Chi-square
Distribution
The Student t Distribution
The F Distribution
Special Notation of Quantiles

The Chi-square Distribution

The F Distribution

Special Notation of Quantiles

The Student t distribution

- A random variable T has a t_{ν} distribution - that is, a t distribution with ν degrees of freedom - if its pdf is:

$$
f(t)=\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)} \frac{1}{(\nu \pi)^{\frac{1}{2}}}\left(1+\frac{t^{2}}{\nu}\right)^{-\frac{\nu+1}{2}}, \quad-\infty<t<\infty
$$

The Student t
Distribution
The Chi-square Distribution

The F Distribution
Special Notation of Quantiles

- We use the t table (Table B. 4 in Vardeman and Jobe)

Overview

Normal
Probabilities
Normal Quantiles to calculate quantiles and probabilities.

- Like the standard normal distribution, the t distribution is mound-shaped and symmetric about 0 .
- The t distribution has fatter tails than the normal, but approaches the shape of the normal as $\nu \rightarrow \infty$

A look at the t_{ν} density

Special Continuous Random Variables

Will Landau

Comparing t_nu to $\mathbf{N}(\mathbf{0}, \mathbf{1})$

A look at the t_{ν} density

Special Continuous
Random Variables
Will Landau

Comparing t_nu to $\mathbf{N}(\mathbf{0}, \mathbf{1})$

Normal

Probabilities
Normal Quantiles
The Student t
Distribution
The Chi-square
Distribution
The F Distribution
Special Notation of Quantiles

A look at the t_{ν} density

Special Continuous
Random Variables
Will Landau

Comparing t_nu to $\mathbf{N}(0,1)$

Special Notation of Quantiles

A look at the t_{ν} density

Special Continuous Random Variables

Will Landau

Comparing t_nu to $\mathbf{N}(\mathbf{0}, \mathbf{1})$

Find probabilities and quantiles of t_{ν} with the t table.

- Say $T \sim t_{5} . P(T \leq 1.476)=0.9$

The Student t
Distribution
The Chi-square
Distribution
The F Distribution
Special Notation of Quantiles

- You can find quantiles labeled in the top row.

Outline

Special Continuous
Random Variables
Will Landau

Overview
Normal
Probabilities

Normal Probabilities

Normal Quantiles
The Student t
Distribution

Normal Quantiles

The Chi-square Distribution

The Student t Distribution
The F Distribution
Special Notation
of Quantiles

The Chi-square Distribution

The F Distribution

Special Notation of Quantiles

The chi-square distribution

- A random variable $S \sim \chi_{\nu}^{2}$ (is chi-square with ν degrees of freedom) if its pdf is:

$$
f(x)=\left\{\begin{array}{lr}
0 & : x \leq 0 \\
\frac{1}{\Gamma(\nu / 2) 2^{\nu / 2}} \cdot x^{\nu / 2-1} \cdot e^{-x / 2}: 0<x<\infty
\end{array}\right.
$$

The Student t
Distribution
The Chi-square
Distribution
The F Distribution
Special Notation of Quantiles

- Use Table B. 5 in Vardeman and Jobe to find chisquare probabilities and quantiles.
- A chi-square random variable is the sum of ν independent standard normal random variables.
- A chi-suqare distribution is not symmetric.

A look at the chi-square density

Special Continuous Random Variables

Will Landau
Chisquare_1 pdf

Normal
Probabilities
Normal Quantiles
The Student t
Distribution
The Chi-square
Distribution
The F Distribution
Special Notation of Quantiles

A look at the chi-square denstiy

Special Continuous Random Variables

Will Landau
Chisquare_3 pdf

Overview
Normal
Probabilities
Normal Quantiles
The Student t
Distribution
The Chi-square
Distribution
The F Distribution
Special Notation of Quantiles

A look at the chi-square density

Special Continuous Random Variables

Will Landau
Chisquare_10 pdf

A look at the chi-square density

Special Continuous Random Variables

Will Landau
Chisquare_500 pdf

Use Table B. 5 to find chi-square probabilities and quantiles.

Special Continuous Random Variables

Will Landau

Overview
Normal
Probabilities
Normal Quantiles
The Student t
Distribution
The Chi-square
Distribution
The F Distribution
Special Notation of Quantiles

Outline

Special Continuous
Random Variables
Will Landau

Overview
Normal
Probabilities

Normal Probabilities

Normal Quantiles
The Student t
Distribution

Normal Quantiles

The Student t Distribution
The F Distribution
Special Notation
of Quantiles

The Chi-square Distribution

The F Distribution

Special Notation of Quantiles

The F distribution

- X has an $F_{\nu_{1}, \nu_{2}}$ distribution if it has pdf:

Overview

Normal
Probabilities
Normal Quantiles

$$
f(x)=\left\{\begin{array}{lr}
0 & : x \leq 0 \\
\frac{\Gamma\left(\frac{\nu_{1}+\nu_{2}}{2}\right)}{\Gamma\left(\frac{\nu_{1}}{2}\right) \Gamma\left(\frac{\nu_{2}}{2}\right)} \cdot\left(\frac{\nu_{1}}{\nu_{2}}\right)^{\nu_{1} / 2} \frac{x^{\nu_{1} / 2-1}}{\left[1+\left(\nu_{1} / \nu_{2}\right) x\right]^{\left(\nu_{1}+\nu_{2}\right) / 2}}: 0<x<\infty
\end{array}\right.
$$

The Student t Distribution

The Chi-square
Distribution
The F Distribution
Special Notation of Quantiles

- An $F_{\nu_{1}, \nu_{2}}$ random variable is a $\chi_{\nu_{1}}^{2} \mathrm{RV}$ divided by an independent $\chi_{\nu_{2}}^{2}$ RV. That's why ν_{1} is the numerator degrees of freedom and ν_{2} is the denominator degrees of freedom.
- Use Tables B.6A-B.6E to find probabilities and quantiles.

A look at the F density

Special Continuous
Random Variables
Will Landau

F_(1,1) pdf

Normal
Probabilities
Normal Quantiles
The Student t
Distribution
The Chi-square
Distribution
The F Distribution
Special Notation of Quantiles

A look at the F density

Special Continuous
Random Variables
Will Landau
F_(5,1) pdf

Normal

Probabilities
Normal Quantiles
The Student t
Distribution
The Chi-square Distribution

The F Distribution
Special Notation of Quantiles

A look at the F density

Special Continuous
Random Variables
Will Landau
F_(25,40) pdf
Overview
Normal
Probabilities
Normal Quantiles
The Student t
Distribution
The Chi-square
Distribution
The F Distribution
Special Notation of Quantiles

Find probabilities and quantiles of the F distribution with Tables B.6A-B.6E

Special Continuous Random Variables

Will Landau

Overview
Normal
Probabilities
Normal Quantiles
The Student t
Distribution
The Chi-square
Distribution
The F Distribution
Special Notation of Quantiles

Outline

Special Continuous
Random Variables
Will Landau

Overview
Normal
Probabilities

Normal Probabilities

Normal Quantiles
The Student t
Distribution

Normal Quantiles

The Student t Distribution

The F Distribution
Special Notation of Quantiles
The Chi-square
Distribution

The F Distribution

Special Notation of Quantiles

Special notation of quantiles

1. $Q(p)$ for $N(0,1)$ is often denoted z_{p}.
2. $Q(p)$ for t_{ν} is often denoted $t_{\nu, p}$.
3. $Q(p)$ for χ_{ν}^{2} is often denoted $\chi_{\nu, p}^{2}$.
4. $Q(p)$ for $F_{\nu_{1}, \nu_{2}}$ is often denoted $F_{\nu_{1}, \nu_{2}, p}$.

The Student t
Distribution
The Chi-square
Distribution
The F Distribution
Special Notation of Quantiles

