Continuous Random Variables (Ch. 5.2)

Introduction to
Continuous
Random Variables
Probability Density Functions

Will Landau
Iowa State University

Cumulative
Distribution
Functions
A special case: the exponential
distribution

Feb 21, 2013

Outline

Continuous Random Variables (Ch. 5.2)

Will Landau

Introduction to Continuous Random Variables

Introduction to
Continuous
Random Variables
Probability Density
Functions

Probability Density Functions

Cumulative
Distribution
Functions

A special case: the exponential
distribution

Cumulative Distribution Functions

A special case: the exponential distribution

Continuous random variables

- Two types of random variables:
- Discrete random variable: one that can only take on

Introduction to
Continuous
Random Variables
Probability Density Functions

Cumulative

- Continuous random variable: one that can fall in an interval of real numbers (T and Z).
- Examples of continuous random variables:
- $Z=$ the amount of torque required to loosen the next bolt (not rounded).
- $T=$ the time you'll have to wait for the next bus home.
- $C=$ outdoor temperature at 3:17 PM tomorrow.
- $L=$ length of the next manufactured part.

Continuous random variables

- $V: \%$ yield of the next run of a chemical process.
- Y : \% yield of a better process.
- How do we mathematically distinguish between V and

Introduction to
Continuous
Random Variables
Probability Density

- We want to show that Y tends to take on higher \% yield values than V.

V and Y have continuous probability distributions

Distribution of V

V

Distribution of \mathbf{Y}

Introduction to
Continuous
Random Variables
Probability Density
Functions
Cumulative
Distribution
Functions
A special case: the
exponential
distribution

- The heights of these curves are not themselves probabilities.
- However, the the curves tell us that process Y will yield more product per run on average than process X.
(C) Will Landau \quad Iowa State University \quad Feb 21, 2013 $5 / 31$

A generic probability density function (pdf)

Outline

Continuous

 Random Variables (Ch. 5.2)
Will Landau

Introduction to Continuous Random Variables

Probability Density Functions

Introduction to
Continuous
Random Variables
Probability Density
Functions
Cumulative

Distribution
Functions
A special case: the exponential distribution

Cumulative Distribution Functions

A special case: the exponential distribution

Definition: probability density function (pdf)

- A probability density function (pdf) of a continuous random variable X is a function $f(x)$ with:

Introduction to
Continuous
Random Variables
Probability Density
Functions

$$
\begin{aligned}
& f(x) \geq 0 \text { for all } x . \\
& \int_{-\infty}^{\infty} f(x) d x=1 \\
& P(a \leq X \leq b)=\int_{a}^{b} f(x) d x, a \leq b
\end{aligned}
$$

- The pdf is the continuous analogue of a discrete random variable's probability mass function.

Example

- Let Y be the time delay (s) between a 60 Hz AC circuit and the movement of a motor on a different circuit.
- Say Y has a density of the form:

$$
f(y)= \begin{cases}c & 0<y<\frac{1}{60} \\ 0 & \text { otherwise }\end{cases}
$$

Introduction to
Continuous
Random Variables
Probability Density
Functions
Cumulative
Distribution
Functions
we say that Y has a Uniform($0,1 / 60$) distribution.

- $f(y)$ must integrate to 1 :

$$
1=\int_{-\infty}^{\infty} f(y) d y=\int_{-\infty}^{0} 0 d y+\int_{0}^{1 / 60} c d y+\int_{1 / 60}^{\infty} 0 d y=\frac{c}{60}
$$

- hence, $c=60$, and:

$$
f(y)= \begin{cases}60 & 0<y<\frac{1}{60} \\ 0 & \text { otherwise }\end{cases}
$$

A look at the density

Introduction to
Continuous
Random Variables
Probability Density
Functions

Cumulative
Distribution
Functions

A special case: the exponential
distribution

Your turn: calculate the following probabilities.

Introduction to
Continuous
Random Variables

$$
f(y)= \begin{cases}60 & 0 \leq y \leq \frac{1}{60} \\ 0 & \text { otherwise }\end{cases}
$$

Probability Density Functions

Cumulative
Distribution
Functions

1. $P\left(Y \leq \frac{1}{100}\right)$

A special case: the exponential
distribution
2. $P\left(Y>\frac{1}{70}\right)$
3. $P\left(|Y|<\frac{1}{120}\right)$
4. $\quad P\left(\left|Y-\frac{1}{200}\right|>\frac{1}{110}\right)$
5. $\quad P\left(Y=\frac{1}{80}\right)$

Answers: calculate the following probabilities

Introduction to
Continuous
Random Variables
Probability Density
Functions

Cumulative
Distribution
Functions
A special case: the exponential
distribution
2.

$$
\begin{aligned}
P\left(Y>\frac{1}{70}\right) & =P\left(\frac{1}{70}<Y \leq \infty\right) \\
& =\int_{1 / 70}^{\infty} f(y) d y \\
& =\int_{1 / 70}^{1 / 60} 60 d y+\int_{1 / 60}^{\infty} 0 d y \\
& =\left.60 y\right|_{1 / 70} ^{1 / 60}+0 \\
& =60\left(\frac{1}{60}-\frac{1}{70}\right) \\
& =\frac{1}{7} \approx 0.143
\end{aligned}
$$

Will Landau

Introduction to

Continuous
Random Variables
Probability Density
Functions

Cumulative
Distribution
Functions
A special case: the
exponential
distribution
3.

$$
\begin{aligned}
P\left(|Y|<\frac{1}{120}\right) & =P\left(-\frac{1}{120}<Y<\frac{1}{120}\right) \\
& =\int_{-1 / 120}^{1 / 120} f(y) d y \\
& =\int_{-1 / 120}^{0} 0 d y+\int_{0}^{1 / 120} 60 d y \\
& =0+\left.60 y\right|_{0} ^{1 / 120} \\
& =60\left(\frac{1}{120}-0\right)=\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
P(& \left.\left|Y-\frac{1}{200}\right|>\frac{1}{110}\right) \\
& =P\left(Y-\frac{1}{200}>\frac{1}{110} \text { or } Y-\frac{1}{200}<-\frac{1}{110}\right) \\
& =P\left(Y>\frac{31}{2200} \text { or } Y<-\frac{9}{2200}\right) \\
& =P\left(Y>\frac{31}{2200}\right)+P\left(Y<-\frac{9}{2200}\right) \\
& =\int_{31 / 2200}^{\infty} f(y) d y+\int_{-\infty}^{-9 / 2200} f(y) d y \\
& =\int_{31 / 2200}^{1 / 60} 60 d y+\int_{1 / 60}^{\infty} 0 d y+\int_{-\infty}^{-9 / 2200} 0 d y \\
& =\left.60\right|_{31 / 2200} ^{1 / 60}+0+0 \\
& =60\left(\frac{1}{60}-\frac{31}{2200}\right)=\frac{17}{6600} \approx 0.00258
\end{aligned}
$$

Introduction to
Continuous
Random Variables
Probability Density
Functions
Cumulative
Distribution
Functions
A special case: the
exponential
distribution

$$
\begin{aligned}
P\left(Y=\frac{1}{80}\right) & =P\left(\frac{1}{80} \leq Y \leq \frac{1}{80}\right) \\
& =\int_{1 / 80}^{1 / 80} f(y) d y=\int_{1 / 80}^{1 / 80} 60 d y \\
& =\left.60\right|_{1 / 80} ^{1 / 80}=60\left(\frac{1}{80}-\frac{1}{80}\right) \\
& =0
\end{aligned}
$$

Will Landau

Introduction to
Continuous
Random Variables
Probability Density
Functions

In fact, for any random variable X and any real number a:

$$
\begin{aligned}
P(X=a) & =P(a \leq X \leq a) \\
& =\int_{a}^{a} f(x) d x=0
\end{aligned}
$$

Outline

Continuous Random Variables (Ch. 5.2)

Will Landau

Introduction to
Continuous

Introduction to Continuous Random Variables

Random Variables
Probability Density Functions

Probability Density Functions

Cumulative Distribution Functions

A special case: the exponential distribution

Cumulative distribution functions (cdf)

- The cumulative distribution function of a random variable X is a function F such that:

$$
F(x)=P(X \leq x)=\int_{-\infty}^{x} f(t) d t
$$

In other words:

$$
\frac{d}{d x} F(x)=f(x)
$$

- As with discrete random variables, F has the following properties:
- $F(x) \geq 0$ for all x.
- F is monotonically increasing.
- $\lim _{x \rightarrow-\infty} F(x)=0$
- $\lim _{x \rightarrow \infty} F(x)=1$

Example: calculating the cdf of Y

- Remember:

$$
f_{Y}(y)= \begin{cases}60 & 0<y<1 / 60 \\ 0 & \text { otherwise }\end{cases}
$$

Introduction to
Continuous
Random Variables

- For $y \leq 0$:

$$
F(y)=P(Y \leq y)=\int_{-\infty}^{y} f(t) d t=\int_{-\infty}^{0} 0 d t=0
$$

- For $0<y<1 / 60$:

$$
F(y)=P(Y \leq y)=\int_{-\infty}^{y} f(t) d t=\int_{-\infty}^{0} 0 d t+\int_{0}^{y} 60 d t=60 y
$$

- For $y \geq 1 / 60$:

$$
\begin{aligned}
F(y) & =P(Y \leq y)=\int_{-\infty}^{y} f(t) d t \\
& =\int_{-\infty}^{0} 0 d t+\int_{0}^{1 / 60} 60 d t+\int_{1 / 60}^{\infty} 0 d t=1
\end{aligned}
$$

A look at the cdf

Will Landau

Introduction to
Continuous
Random Variables
Probability Density
Functions
Cumulative
Distribution
Functions
A special case: the exponential
distribution

Your turn: calculate the following using the cdf

Introduction to
Continuous
Random Variables

$$
F(y)= \begin{cases}0 & y \leq 0 \\ 60 y & 0<y \leq \frac{1}{60} \\ 1 & y>\frac{1}{60}\end{cases}
$$

Probability Density
Functions

Cumulative
Distribution
Functions
A special case: the exponential

1. $F(1 / 70)$
2. $P\left(Y \leq \frac{1}{80}\right)$
3. $P\left(Y>\frac{1}{150}\right)$
4. $P\left(\frac{1}{130} \leq Y \leq \frac{1}{120}\right)$

Answers: calculate the following using the cdf

1. $F\left(\frac{1}{70}\right)=60 \frac{1}{70}=\frac{6}{7}$
2. $P\left(Y \leq \frac{1}{80}\right)=F\left(\frac{1}{80}\right)=60 \frac{1}{80}=\frac{3}{4}$
3.

$$
\begin{aligned}
P\left(Y>\frac{1}{150}\right) & =\int_{1 / 150}^{\infty} f(y) d y \\
& =\int_{-\infty}^{\infty} f(y) d y-\int_{-\infty}^{1 / 150} f(y) d y \\
& =1-F(1 / 150)=1-\frac{60}{150} \\
& =\frac{3}{5}
\end{aligned}
$$

Introduction to
Continuous
Random Variables
Probability Density
Functions
Cumulative
Distribution
Functions
A special case: the exponential
distribution

In fact, for any random variable X, discrete or continuous:

$$
P(X \geq x)=1-P(X<x)
$$

4.

Introduction to

Continuous

$$
\begin{aligned}
P\left(\frac{1}{130} \leq Y \leq \frac{1}{120}\right) & =\int_{1 / 130}^{1 / 120} f(y) d y \\
& =\int_{-\infty}^{1 / 120} f(y) d y-\int_{-\infty}^{1 / 130} f(y) d y \\
& =F(1 / 120)-F(1 / 130) \\
& =60(1 / 120)-60(1 / 130) \\
& =1 / 26 \approx 0.0384
\end{aligned}
$$

Outline

Continuous

 Random Variables (Ch. 5.2)Will Landau

Introduction to Continuous Random Variables
Introduction to
Continuous
Random Variables
Probability Density
Functions

Cumulative
Probability Density Functions
Distribution
Functions
A special case: the exponential distribution

Cumulative Distribution Functions

A special case: the exponential distribution

The exponential distribution

- A random variable X has an Exponential (α) distribution if:

Introduction to
Continuous
Random Variables

$$
f(x)= \begin{cases}\frac{1}{\alpha} e^{-x / \alpha} & x>0 \\ 0 & \text { otherwise }\end{cases}
$$

Probability Density Functions

Cumulative
Distribution
Functions

exponential
distribution

Your turn: for $X \sim \operatorname{Exp}(2)$, calculate the

Introduction to
Continuous
Random Variables
Probability Density Functions

$$
f(x)= \begin{cases}\frac{1}{2} e^{-x / 2} & x>0 \\ 0 & \text { otherwise }\end{cases}
$$

A special case: the exponential distribution

1. $P(X \leq 1)$
2. $P(X>5)$
3. The cdf F of X

Answers: for $X \sim \operatorname{Exp}(2)$, calculate the following

1.

$$
\begin{aligned}
P(X \leq 1) & =\int_{-\infty}^{1} f(x) d x \\
& =\int_{-\infty}^{0} 0 d x+\int_{0}^{1} \frac{1}{2} e^{-x / 2} d x \\
& =0+\left(-\left.e^{-x / 2}\right|_{0} ^{1}\right. \\
& =-e^{-1 / 2}-\left(-e^{-0 / 2}\right) \\
& =1-e^{-1 / 2} \approx 0.393
\end{aligned}
$$

Introduction to
Continuous
Random Variables
Probability Density
Functions
Cumulative
Distribution
Functions
A special case: the exponential
distribution
2.

Introduction to
Continuous
Random Variables

$$
\begin{aligned}
P(X>5) & =\int_{5}^{\infty} f(x) d x \\
& =\int_{5}^{\infty} \frac{1}{2} e^{-x / 2} d x \\
& =-\left.e^{-x / 2}\right|_{5} ^{\infty} \\
& =-e^{-\infty / 2}+e^{-5 / 2} \\
& =e^{-5 / 2} \approx 0.082
\end{aligned}
$$

Probability
Functions

Cumulative
Distribution
Functions
A special case: the exponential distribution
3. For $x<0$:

$$
\begin{aligned}
F(x) & \left.=P(X \leq x)=\int_{-\infty}^{x} f(x) d x\right) \\
& =\int_{-\infty}^{x} 0 d x=0
\end{aligned}
$$

Introduction to
Continuous
Random Variables
Probability Density Functions

Cumulative
Distribution
Functions
A special case: the exponential

$$
\begin{aligned}
F(x) & =P(X \leq x)=\int_{-\infty}^{x} f(x) d x \\
& =\int_{-\infty}^{0} 0 d x+\int_{0}^{x} \frac{1}{2} e^{-t / 2} d t \\
& =-\left.e^{-t / 2}\right|_{0} ^{x}=-e^{-x / 2}-\left(-e^{-0 / 2}\right) \\
& =1-e^{-x / 2}
\end{aligned}
$$

Hence:

Introduction to
Continuous
Random Variables
Probability Density Functions

$$
F(x)= \begin{cases}1-e^{-x / 2} & x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

A special case: the exponential
In general, an $\operatorname{Exp}(\alpha)$ random variable has cdf:

$$
F(x)= \begin{cases}1-e^{-x / \alpha} & x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

Uses of the $\operatorname{Exp}(\alpha)$ random variable

- An $\operatorname{Exp}(\alpha)$ random variable measures the waiting time until a specific event that has an equal chance of happening at any point in time.
- Examples:
- Time between your arrival at a bus stop and the

A special case: the exponential distribution moment the bus comes.

- Time until the next person walks inside the library.
- Time until the next car accident on a stretch of highway.

