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» Two types of random variables: Random Variables

» Discrete random variable: one that can only take on
a set of isolated points (X, N, and S).

» Continuous random variable: one that can fall in an
interval of real numbers (T and Z).

» Examples of continuous random variables:

» Z = the amount of torque required to loosen the next
bolt (not rounded).

» T = the time you'll have to wait for the next bus home.

» C = outdoor temperature at 3:17 PM tomorrow.

» L = length of the next manufactured part.
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V: % yield of the next run of a chemical process.

Y: % yield of a better process.
How do we mathematically distinguish between V' and
Y, given:

» Each has the same range: 0% < V, Y < 100%

» There are uncountably many possible values in this

range.

» We want to show that Y tends to take on higher %
yield values than V.

v

v
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V and Y have continuous probability Random Variales
. . . (Ch. 5.2)
distributions S—

f(v)

Introduction to

Distribution of V Distribution of Y Continuous

Random Variables
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The heights of these curves are not themselves
probabilities.

However, the the curves tell us that process Y will yield
more product per run on average than process X.
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Shaded area gives
P[2=X=<6]

Total area under
the curve is 1
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» A probability density function (pdf) of a continuous

random variable X is a function f(x) with: - _
Probability Density

Functions

f(x) > 0 for all x.

» The pdf is the continuous analogue of a discrete
random variable's probability mass function.
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Example

> Let Y be the time delay (s) between a 60 Hz AC circuit and
the movement of a motor on a different circuit.

> Say Y has a density of the form:

c O<y< &
f — 60
) {0 otherwise

we say that Y has a Uniform(0, 1/60) distribution.
> f(y) must integrate to 1:

0o 0 1/60 I~ c
1:/ f(y)dy:/ 0dy+/ cdy+/ Ody = —
— 00 —c0 0 1/60 60

» hence, ¢ = 60, and:

60 0<y< &
f — 60
) {0 otherwise
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A look at the density

4fO)

Total area under the
graph of f(y) must be 1

60 —

D= =
=Y

© Will Landau lowa State University

Continuous
Random Variables
(Ch. 5.2)

Will Landau

Probability Density
Functions

Feb 21, 2013 10 / 31



Continuous

Your turn: calculate the following probabilities. i Ve

(Ch. 5.2)
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60 0<y<g e
fly) = _ o0 ;

0 otherwise
1L P(Y <)
2. P(Y > 55)
3. P(lY] < )

1 1

4. P(|Y = 50| > 110)
5. P(Y = s%)
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Answers: calculate the following probabilities

© Will Landau

1

P(—oo <Y < —
(mo0 <V < 155)
1/100

/ f(y)dy
0 1/100

/ Ody :/ 60dy
— 00 0

60 _3

100 5
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1 1 1
PY| < =) =P(—— < Y < —
(| | < 120) ( 120 < < 120) Probability Density

1/120 Functions

= / f(y)dy
—1/120
0 1/120

_ / 0dy + / 60dly
—1/120 0

= 0+ 60y |o/**°

1 1
—60(120‘0)—2
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~200| ~ 110’

L1y 11y

200 7 110 7~ 200 © 110 ity Dens
9 Eroba.bmty Density

Y Y 9 unctions

(Y > 2000 & < 2200)

31 9
= P(Y > o)+ P(Y < = 5oo5)

00 —9/2200
:/3 f(y)dy—i—/ f(y)dy

1/2200 —00

1/60 00 —9/2200
:/ 60dy+/ ody+/ 0dy
31/2200 1/60

_ 1/60
= 60|31/2200 +0+0

Will Landau

P(’Y

= P(Y

1 31 17
=00 (60 - 2200) = 00 - 000298
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( 80 (80 - 80
1/80 1/80
:/ f(y)d'y = / 60dy Probability Density
1/80 1/80 Functions
- 1/80 1 B 1
— 60 /%= 60 (80 80>
=0

In fact, for any random variable X and any real number
a:
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CumU|at|VG dlStrlbUtlon funCtlonS (Cdf) Random Variables
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» The cumulative distribution function of a random Will Landau
variable X is a function F such that:

X
F(X):P(ng):/ f(t)dt
— 00
Cl'Jm%llati.ve
In other words: ELIJSntc”tli):r:;OH

d
aF(x) = f(x)

» As with discrete random variables, F has the following
properties:

F(x) > 0 for all x.

F is monotonically increasing.

limy_, oo F(x) = 0

limy_ oo F(x) =1

v

v VvYyy
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Example: calculating the

» Remember:

fy(y) = {20

» Fory <O0:

Fo) =Py <= [ A= [

»> For 0 <y < 1/60:

F(y)=P(Y§y):/y 1‘(t)dt:/0 0dt+/0y60dt:60y

—0o0
> For y >1/60:

Fly)=P(Y <y) =

cdf of Y

0<y<1/60
otherwise

0
0dt=0

— 00

/_yoo f(t)dt

0 1/60 IS
= / Odt + / 60dt + Odt =1
0

— o0
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A look at the cdf

AF(y)
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Your turn: calculate the following using the cdf

0 y <0
Fly)={60y 0<y<g
1 y>%
1. F(1/70)
2. P(Y<g)
3. P(Y > 1)
4. P(gs <Y < 35)
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Answers: calculate the following using the cdf

70 -7
2. P(Y < g)=F(g) =604 =
3.
P(Y > 1) /Oo f(y)d
Ten) T y)ay
150 1/150
00 1/150
= / f(y)dy / f(y)dy
60
=1-F(1/1 =1—- —
(1/150) =1 - o5
_3
5
In fact, for any random variable X, discrete or

continuous:
P(X>x)=1—-P(X < x)
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1/120 1/130
= /_ f(y)dy — /_
= F(1/120) — F(1/130)

— 60(1,/120) — 60(1/130)
—1/26 ~ 0.0384
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The exponential distribution

» A random variable X has an Exponential(«) distribution

if:

h f(x)

1 _—x
ae /a X > 0
0 otherwise
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Your turn: for X ~ Exp(2), calculate the
following

f(x) = {%e_m -

0 otherwise
P(X <1)

P(X >5)
The cdf F of X
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Answers: for X ~ Exp(2), calculate the following [
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P(X <1)= /1 f(x)dx

— 0o
0 1 1
= / Odx + / 7e_X/2dX A special case: the
2 exponential
o0 0 distribution
— —x/2 1

_ _e—1/2 _ (_e—0/2)

—1-e 420393
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Hence:

1—e 2 x>0

Flo = 0 otherwise
A special case: the
exponential

distribution

In general, an Exp(«) random variable has cdf:

1— e X/ x>0

F(x) =
(x) 0 otherwise
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» An Exp(«) random variable measures the waiting time
until a specific event that has an equal chance of
happening at any point in time.

» Examples: A special case: the

exponential
distribution

» Time between your arrival at a bus stop and the
moment the bus comes.

» Time until the next person walks inside the library.

» Time until the next car accident on a stretch of highway.
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