Special Discrete Random Variables (Ch. 5.1)

Will Landau

Binomial Distribution

Geometric Distribution

Poisson Distribution

Special Discrete Random Variables (Ch. 5.1)

Will Landau

Iowa State University

Feb 19, 2013

Outline

Binomial Distribution

Geometric Distribution

Poisson Distribution

Special Discrete Random Variables (Ch. 5.1)

Will Landau

Binomial Distribution

Geometric Distribution

The Binomial Distribution

X ~ Binomial(n, p) − i.e., X is distributed as a binomial random variable with parameters n and p (0

$$f_X(x) = \begin{cases} \binom{n}{x} p^x (1-p)^{n-x} & x = 0, \dots, n \\ 0 & \text{otherwise} \end{cases}$$

where:

•
$$\binom{n}{x} = \frac{n!}{x!(n-x)!}$$
, read "*n* choose *x*"
• $n! = n \cdot (n-1) \cdot \dots \cdot 2 \cdot 1$, the factorial function.

Special Discrete Random Variables (Ch. 5.1)

Will Landau

Binomial Distribution

Geometric Distribution

The Binomial Distribution

Special Discrete Random Variables (Ch. 5.1)

Will Landau

Binomial Distribution

Geometric Distribution

Purpose of the binomial random variable

- A Bin(n, p) random variable counts the number of successes in n success-failure trials that:
 - are independent of one another.
 - each succeed with probability p.

Examples:

- Number of conforming hexamine pellets in a batch of n = 50 total pellets made from a pelletizing machine.
- ▶ Number of runs of the same chemical process with percent yield above 80%, given that you run the process a total of *n* = 1000 times.
- Number of rivets that fail in a boiler of n = 25 rivets within 3 years of operation. (Note; "success" doesn't always have to be good.)

Will Landau

Binomial Distribution

Geometric Distribution

- Suppose you have a machine with 10 independent components in series. The machine only works if all the components work.
- ► Each component succeeds with probability p = 0.95 and fails with probability 1 - p = 0.05.
- Let Y be the number of components that succeed in a given run of the machine. Then:

 $Y \sim \text{Binomial}(n = 10, p = 0.95)$

Special Discrete Random Variables (Ch. 5.1)

Will Landau

Binomial Distribution

Geometric Distribution

$$P(\text{machine succeeds}) = P(Y = 10) \\ = {\binom{10}{10}} p^{10} (1-p)^{10-10} \\ = p^{10} \\ = 0.95^{10} \\ = 0.5987$$

► This machine isn't very reliable.

Will Landau

Binomial Distribution

Geometric Distribution

- What if I arrange these 10 components in parallel? This machine succeeds if at least 9 of the components succeed.
- What is the probability that the new machine succeeds?

Special Discrete Random Variables (Ch. 5.1)

Will Landau

Binomial Distribution

Geometric Distribution

P(improved machine succeeds)

$$= P(Y \ge 9)$$

= $P(Y = 9) + P(Y = 10)$
= $\binom{10}{9}p^9(1-p) + \binom{10}{10}p^{10}(1-p)^{10-10}$
= $(10) \cdot 0.95^9 \cdot 0.05 + (1) \cdot 0.95^{10}$
= 0.9139

 By allowing just one component to fail, we made this machine far more reliable. Special Discrete Random Variables (Ch. 5.1)

Will Landau

Binomial Distribution

Geometric Distribution

If we allow up to 2 components to fail:

P(improved machine succeeds)

$$= P(Y \ge 8)$$

= $P(Y = 8) + P(Y = 9) + P(Y = 10)$
= $\binom{10}{8} p^8 (1-p)^{10-8} + \binom{10}{9} p^9 (1-p) + \binom{10}{10} p^{10} (1-p)^{10-10}$
= $\frac{10!}{(10-8)!8!} \cdot 0.95^8 \cdot 0.05^2 + (10) \cdot 0.95^9 \cdot 0.05 + (1) \cdot 0.95^{10}$
= 0.9885

Special Discrete Random Variables (Ch. 5.1)

Will Landau

Binomial Distribution

Geometric Distribution

Var
$$(Y) = np(1-p) = 10 \cdot 0.95 \cdot (1-0.95) = 0.475.$$

•
$$SD(Y) = \sqrt{Var(Y)} = \sqrt{np(1-p)} = 0.689.$$

Special Discrete Random Variables (Ch. 5.1)

Will Landau

Binomial Distribution

Geometric Distribution

Outline

Binomial Distribution

Geometric Distribution

Poisson Distribution

Special Discrete Random Variables (Ch. 5.1)

Will Landau

Binomial Distribution

Geometric Distribution

Geometric random variables

X ~ Geometric(p) - that is, X has a geometric distribution with parameter p (0

$$f_X(x) = \begin{cases} p(1-p)^{x-1} & x = 1, 2, 3, \dots \\ 0 & \text{otherwise} \end{cases}$$

and its cdf is:

$$F_X(x) = \begin{cases} 1 - (1 - p)^x & x = 1, 2, 3, \dots \\ 0 & \text{otherwise} \end{cases}$$

•
$$E(X) = \frac{1}{p}$$

• $Var(X) = \frac{1-p}{p^2}$

Special Discrete Random Variables (Ch. 5.1)

Will Landau

Binomial Distribution

Geometric Distribution

A look at the Geom(p) distribution

Special Discrete Random Variables (Ch. 5.1)

Will Landau

Binomial Distribution

Geometric Distribution

Uses of the $X \sim \text{Geom}(p)$

For an indefinitely-long sequence of independent, success-failure trials, each with P(success) = p, X is the number of trials it takes to get a success.

Examples:

- Number of rolls of a fair die until you land a 5.
- Number of shipments of raw material you get until you get a defective one.
- The number of enemy aircraft that fly close before one flies into friendly airspace.
- Number hexamine pellets you make before you make one that does not conform.
- Number of buses that come before yours.

Special Discrete Random Variables (Ch. 5.1)

Will Landau

Binomial Distribution

Geometric Distribution

Example: shorts in NiCad batteries

- An experimental program was successful in reducing the percentage of manufactured NiCad cells with internal shorts to around 1%.
- Let T be the test number at which the first short is discovered. Then, T ~ Geom(p).

P(1st or 2nd cell tested is has the 1st short) = P(T = 1 or T = 2)

$$= f(1) + f(2)$$

= p + p(1 - p)
= 0.01 + 0.01(1 - 0.01)
= 0.02

Special Discrete Random Variables (Ch. 5.1)

Will Landau

Binomial Distribution

Geometric Distribution

⊃oisson Distribution

P(at least 50 cells tested w/o finding a short) = P(T > 50)

$$= 1 - P(T \le 50)$$

= 1 - F(50)
= 1 - (1 - (1 - p)^{x})
= (1 - p)^{x}
= (1 - 0.01)^{50}
= 0.61

© Will Landau

Example: shorts in NiCad batteries

$$E(T) = \frac{1}{p} = \frac{1}{0.01}$$

= 100 tests for the first short to appear, on avg.
$$SD(T) = \sqrt{Var(T)} = \sqrt{\frac{1-p}{p^2}}$$

= $\sqrt{\frac{1-0.01}{0.01^2}} = 99.5$ tested batteries

Special Discrete Random Variables (Ch. 5.1)

Will Landau

Binomial Distribution

Geometric Distribution

Outline

Binomial Distribution

Geometric Distribution

Poisson Distribution

Special Discrete Random Variables (Ch. 5.1)

Will Landau

Binomial Distribution

Geometric Distribution

Poisson random variables

X ~ Poisson(λ) − that is, X has a geometric distribution with parameter λ > 0 − if its pmf is:

$$f_X(x) = \begin{cases} \frac{e^{-\lambda}\lambda^x}{x!} & x = 0, 1, 2, 3, \dots \\ 0 & \text{otherwise} \end{cases}$$

$$E(X) = \lambda$$

•
$$Var(X) = \lambda$$

Special Discrete Random Variables (Ch. 5.1)

Will Landau

Binomial Distribution

Geometric Distribution

A look at the Poisson distribution

Special Discrete Random Variables (Ch. 5.1)

Will Landau

Binomial Distribution

Geometric Distribution

Meaning of the Poisson distribution

- A Poisson(\u03c6) random variable counts the number of occurrences that happen over a fixed interval of time or space.
- These occurrences must:
 - be independent
 - be sequential in time (no two occurrences at once)
 - occur at the same constant rate, λ .
- λ, the rate parameter, is the expected number of occurrences in the specified interval of time or space.

Special Discrete Random Variables (Ch. 5.1)

Will Landau

Binomial Distribution

Geometric Distribution

Examples

- Y is the number of shark attacks off the coast of CA next year. λ = 100 attacks per year.
- ► Z is the number of shark attacks off the coast of CA next month. $\lambda = 100/12 = 8.3333$ attacks per month
- N is the number of β particles emitted from a small bar of plutonium, registered by a Geiger counter, in a minute. λ = 459.21 particles/minute.
- J is the number of particles per three minutes. $\lambda = ?$

$$\begin{split} \lambda &= \frac{459.21 \text{ (units particle)}}{1 \text{ (unit minute)}} \cdot \frac{3 \text{ (units minute)}}{1 \text{ (unit of 3 minutes)}} \\ &= \frac{1377.63 \text{ (units particle)}}{1 \text{ (unit of 3 minutes)}} = 1377.62 \text{ particles per 3 minutes} \end{split}$$

Special Discrete Random Variables (Ch. 5.1)

Will Landau

Binomial Distribution

Geometric Distribution

Example: Rutherford/Geiger experiment

- Rutherford and Geiger measured the number of α particles detected near a small bar of plutonium for 8-minute periods.
- The average number of particles per 8 minutes was $\lambda = 3.87$ particles / 8 min.
- Let S ~ Poisson(λ), the number of particles detected in the next 8 minutes.

$$f(s) = \begin{cases} \frac{e^{-3.87}(3.87)^s}{s!} & s = 0, 1, 2, ..\\ 0 & \text{otherwise} \end{cases}$$

P(at least 4 particles recorded)

$$= P(S \ge 4)$$

= f(4) + f(5) + f(6) + ...
= 1 - f(0) - f(1) - f(2) - f(3)
= 1 - \frac{e^{-3.87}(3.87)^0}{0!} - \frac{e^{-3.87}(3.87)^1}{1!} - \frac{e^{-3.87}(3.87)^2}{2!} - \frac{e^{-3.87}(3.87)^3}{3!}
= 0.54

Special Discrete Random Variables (Ch. 5.1)

Will Landau

Binomial Distribution

Geometric Distribution

Example: arrival at a university library

- Some students' data indicate that between 12:00 and 12:10 P.M. on Monday through Wednesday, an average of around 125 students entered a library at Iowa State University library.
- ► Let *M* be the number of students entering the ISU library between 12:00 and 12:01 PM next Tuesday.
- Model $M \sim \text{Poisson}(\lambda)$.
- Having observed 125 students enter between 12:00 and 12:10 PM last Tuesday, we might choose:

$$\begin{split} \lambda &= \frac{125 \text{ (units of student)}}{1 \text{ (unit of 10 minutes)}} \cdot \frac{1 \text{ (unit of 10 minutes)}}{10 \text{ (units of minute)}} \\ &= \frac{12.5 \text{ (units of student)}}{1 \text{ (unit minute)}} = 12.5 \text{ students per minute} \end{split}$$

Special Discrete Random Variables (Ch. 5.1)

Will Landau

Binomial Distribution

Geometric Distribution

Example: arrival at a university library

Under this model, the probability that between 10 and 15 students arrive at the library between 12:00 and 12:01 PM is:

$$P(10 \le M \le 15) = f(10) + f(11) + f(12) + f(13) + f(14) + f(15)$$

= $\frac{e^{-12.5}(12.5)^{10}}{10!} + \frac{e^{-12.5}(12.5)^{11}}{11!} + \frac{e^{-12.5}(12.5)^{12}}{12!}$
+ $\frac{e^{-12.5}(12.5)^{13}}{13!} + \frac{e^{-12.5}(12.5)^{14}}{14!} + \frac{e^{-12.5}(12.5)^{15}}{15!}$
= 0.60

Special Discrete Random Variables (Ch. 5.1)

Will Landau

Binomial Distribution

Geometric Distribution

- ► Let X be the number of unprovoked shark attacks that will occur off the coast of Florida next year.
- Model $X \sim \text{Poisson}(\lambda)$.
- From the shark data at http://www.flmnh.ufl.edu/ fish/sharks/statistics/FLactivity.htm, 246 unprovoked shark attacks occurred from 2000 to 2009.
- Hence, I calculate:

$$\begin{split} \lambda &= \frac{246 \text{ (units attack)}}{1 \text{ (unit of 10 years)}} \cdot \frac{1 \text{ (unit of 10 years)}}{10 \text{ (units year)}} \\ &= \frac{24.6 \text{ (units attack)}}{1(\text{unit year)}} = 24.6 \text{ attacks per year} \end{split}$$

Special Discrete Random Variables (Ch. 5.1)

Will Landau

Binomial Distribution

Geometric Distribution

$$P(\text{no attacks next year}) = f(0) = e^{-24.6} \cdot \frac{24.6^0}{0!}$$

$$\approx 2.07 \times 10^{-11}$$

$$P(\text{at least 5 attacks}) = 1 - P(\text{at most 4 attacks})$$

$$= 1 - F(4)$$

$$= 1 - f(0) - f(1) - f(2) - f(3) - f(4)$$

$$= 1 - e^{-24.6} \frac{24.6^0}{0!} - e^{-24.6} \frac{24.6^1}{1!} - e^{-24.6} \frac{24.6^2}{2!}$$

$$- e^{-24.6} \frac{24.6^3}{3!} - e^{-24.6} \frac{24.6^4}{4!}$$

pprox 0.9999996

P(more than 30 attacks) = 1 - P(at least 30 attacks)

$$= 1 - e^{-24.6} \sum_{i=0}^{30} rac{24.6^{ imes}}{x!} = 1 - e^{-24.6} \cdot 4.251 imes 10^{10}$$

 ≈ 0.1193

Special Discrete Random Variables (Ch. 5.1)

Will Landau

Binomial Distribution

Geometric Distribution

- Now, let Y be the total number of shark attacks in Florida during the next 4 months.
- Let Y ~ Poisson(θ), where θ is the true shark attack rate per 4 months:

$$\theta = \frac{24.6 \text{ (units attack)}}{1 \text{ (unit year)}} \cdot \frac{1/3 \text{ (unit year)}}{1 \text{ (unit of 4 months)}}$$
$$= \frac{8.2 \text{ (units attack)}}{1 \text{ (unit of 4 months)}} = 8.2 \text{ attacks per 4 months}$$

Special Discrete Random Variables (Ch. 5.1)

Will Landau

Binomial Distribution

Geometric Distribution

$$P(\text{no attacks next year}) = f(0) = e^{-8.2} \cdot \frac{8.2^0}{0!}$$

pprox 0.000275

P(at least 5 attacks) = 1 - P(at most 4 attacks)= 1 - F(4) = 1 - f(0) - f(1) - f(2) - f(3) - f(4) = 1 - e^{-8.2} \frac{8.2^0}{0!} - e^{-8.2} \frac{8.2^1}{1!} - e^{-8.2} \frac{8.2^2}{2!} - $e^{-8.2} \frac{8.2^3}{3!} - e^{-8.2} \frac{8.2^4}{4!}$ ≈ 0.9113

P(more than 30 attacks) = 1 - P(at least 30 attacks)

$$= 1 - e^{-8.2} \sum_{i=0}^{30} \frac{8.2^{\times}}{x!} = 1 - e^{-8.2} \cdot 4.251 \times 10^{10}$$

$$\approx 9.53 \times 10^{-10}$$

C Will Landau

Special Discrete Random Variables (Ch. 5.1)

Will Landau

Binomial Distribution

Geometric Distribution