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The Binomial Distribution

I X ∼ Binomial(n, p) − i.e., X is distributed as a
binomial random variable with parameters n and p
(0 < p < 1) if:

fX (x) =

{(n
x

)
px(1 − p)n−x x = 0, . . . , n

0 otherwise

where:
I
(
n
x

)
= n!

x!(n−x)! , read “n choose x”
I n! = n · (n − 1) · · · · · 2 · 1, the factorial function.

I E (X ) = np

I Var(X ) = np(1 − p)
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Purpose of the binomial random variable

I A Bin(n, p) random variable counts the number of
successes in n success-failure trials that:

I are independent of one another.
I each succeed with probability p.

I Examples:
I Number of conforming hexamine pellets in a batch of

n = 50 total pellets made from a pelletizing machine.
I Number of runs of the same chemical process with

percent yield above 80%, given that you run the process
a total of n = 1000 times.

I Number of rivets that fail in a boiler of n = 25 rivets
within 3 years of operation. (Note; “success” doesn’t
always have to be good.)
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Example: machine with 10 components

I Suppose you have a machine with 10 independent
components in series. The machine only works if all the
components work.

I Each component succeeds with probability p = 0.95 and
fails with probability 1 − p = 0.05.

I Let Y be the number of components that succeed in a
given run of the machine. Then:

Y ∼ Binomial(n = 10, p = 0.95)
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Example: machine with 10 components

P(machine succeeds) = P(Y = 10)

=

(
10

10

)
p10(1 − p)10−10

= p10

= 0.9510

= 0.5987

I This machine isn’t very reliable.
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Example: machine with 10 components

I What if I arrange these 10 components in parallel? This
machine succeeds if at least 9 of the components
succeed.

I What is the probability that the new machine succeeds?
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Example: machine with 10 components

P(improved machine succeeds)

= P(Y ≥ 9)

= P(Y = 9) + P(Y = 10)

=

(
10

9

)
p9(1 − p) +

(
10

10

)
p10(1 − p)10−10

= (10) · 0.959 · 0.05 + (1) · 0.9510

= 0.9139

I By allowing just one component to fail, we made this
machine far more reliable.
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Example: machine with 10 components

I If we allow up to 2 components to fail:

P(improved machine succeeds)

= P(Y ≥ 8)

= P(Y = 8) + P(Y = 9) + P(Y = 10)

=

(
10

8

)
p8(1 − p)10−8 +

(
10

9

)
p9(1 − p) +

(
10

10

)
p10(1 − p)10−10

=
10!

(10 − 8)!8!
· 0.958 · 0.052 + (10) · 0.959 · 0.05 + (1) · 0.9510

= 0.9885
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Example: machine with 10 components

I E (Y ) = np = 10 · 0.95 = 9.5. So the number of
components to fail per run on average is 9.5.

I Var(Y ) = np(1 − p) = 10 · 0.95 · (1 − 0.95) = 0.475.

I SD(Y ) =
√
Var(Y ) =

√
np(1 − p) = 0.689.

© Will Landau Iowa State University Feb 19, 2013 11 / 29



Special Discrete
Random Variables

(Ch. 5.1)

Will Landau

Binomial
Distribution

Geometric
Distribution

Poisson
Distribution

Outline

Binomial Distribution

Geometric Distribution

Poisson Distribution

© Will Landau Iowa State University Feb 19, 2013 12 / 29



Special Discrete
Random Variables

(Ch. 5.1)

Will Landau

Binomial
Distribution

Geometric
Distribution

Poisson
Distribution

Geometric random variables

I X ∼ Geometric(p) − that is, X has a geometric
distribution with parameter p (0 < p < 1) − if its pmf
is:

fX (x) =

{
p(1 − p)x−1 x = 1, 2, 3, . . .

0 otherwise

and its cdf is:

FX (x) =

{
1 − (1 − p)x x = 1, 2, 3, . . .

0 otherwise

I E (X ) = 1
p

I Var(X ) = 1−p
p2
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A look at the Geom(p) distribution
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Uses of the X ∼ Geom(p)

I For an indefinitely-long sequence of independent,
success-failure trials, each with P(success) = p, X is
the number of trials it takes to get a success.

I Examples:
I Number of rolls of a fair die until you land a 5.
I Number of shipments of raw material you get until you

get a defective one.
I The number of enemy aircraft that fly close before one

flies into friendly airspace.
I Number hexamine pellets you make before you make

one that does not conform.
I Number of buses that come before yours.
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Example: shorts in NiCad batteries
I An experimental program was successful in reducing the percentage of

manufactured NiCad cells with internal shorts to around 1%.
I Let T be the test number at which the first short is discovered. Then,

T ∼ Geom(p).

P(1st or 2nd cell tested is has the 1st short) = P(T = 1 or T = 2)

= f (1) + f (2)

= p + p(1 − p)

= 0.01 + 0.01(1 − 0.01)

= 0.02

P(at least 50 cells tested w/o finding a short) = P(T > 50)

= 1 − P(T ≤ 50)

= 1 − F (50)

= 1 − (1 − (1 − p)x )

= (1 − p)x

= (1 − 0.01)50

= 0.61
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Example: shorts in NiCad batteries

E (T ) =
1

p
=

1

0.01

= 100 tests for the first short to appear, on avg.

SD(T ) =
√

Var(T ) =

√
1 − p

p2

=

√
1 − 0.01

0.012
= 99.5 tested batteries
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Poisson random variables

I X ∼ Poisson(λ) − that is, X has a geometric
distribution with parameter λ > 0 − if its pmf is:

fX (x) =

{
e−λλx

x! x = 0, 1, 2, 3, . . .

0 otherwise

I E (X ) = λ

I Var(X ) = λ
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A look at the Poisson distribution
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Meaning of the Poisson distribution

I A Poisson(λ) random variable counts the number of
occurrences that happen over a fixed interval of time or
space.

I These occurrences must:
I be independent
I be sequential in time (no two occurrences at once)
I occur at the same constant rate, λ.

I λ, the rate parameter, is the expected number of
occurrences in the specified interval of time or space.
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Examples

I Y is the number of shark attacks off the coast of CA next
year. λ = 100 attacks per year.

I Z is the number of shark attacks off the coast of CA next
month. λ = 100/12 = 8.3333 attacks per month

I N is the number of β particles emitted from a small bar of
plutonium, registered by a Geiger counter, in a minute. λ =
459.21 particles/minute.

I J is the number of particles per three minutes. λ =?

λ =
459.21 (units particle)

1 (unit minute)
· 3 (units minute)

1 (unit of 3 minutes)

=
1377.63 (units particle)

1 (unit of 3 minutes)
= 1377.62 particles per 3 minutes
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Example: Rutherford/Geiger experiment
I Rutherford and Geiger measured the number of α particles detected

near a small bar of plutonium for 8-minute periods.

I The average number of particles per 8 minutes was λ = 3.87 particles /
8 min.

I Let S ∼ Poisson(λ), the number of particles detected in the next 8
minutes.

f (s) =

{
e−3.87(3.87)s

s!
s = 0, 1, 2, . . .

0 otherwise

P(at least 4 particles recorded)

= P(S ≥ 4)

= f (4) + f (5) + f (6) + · · ·
= 1 − f (0) − f (1) − f (2) − f (3)

= 1 −
e−3.87(3.87)0

0!
−

e−3.87(3.87)1

1!

−
e−3.87(3.87)2

2!
−

e−3.87(3.87)3

3!

= 0.54
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Example: arrival at a university library

I Some students’ data indicate that between 12:00 and 12:10
P.M. on Monday through Wednesday, an average of around
125 students entered a library at Iowa State University library.

I Let M be the number of students entering the ISU library
between 12:00 and 12:01 PM next Tuesday.

I Model M ∼ Poisson(λ).

I Having observed 125 students enter between 12:00 and 12:10
PM last Tuesday, we might choose:

λ =
125 (units of student)

1 (unit of 10 minutes)
· 1 (unit of 10 minutes)

10 (units of minute)

=
12.5 (units of student)

1 (unit minute)
= 12.5 students per minute
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Example: arrival at a university library

I Under this model, the probability that between 10 and 15
students arrive at the library between 12:00 and 12:01 PM is:

P(10 ≤ M ≤ 15) = f (10) + f (11) + f (12) + f (13) + f (14) + f (15)

=
e−12.5(12.5)10

10!
+

e−12.5(12.5)11

11!
+

e−12.5(12.5)12

12!

+
e−12.5(12.5)13

13!
+

e−12.5(12.5)14

14!
+

e−12.5(12.5)15

15!
= 0.60
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Example: shark attacks

I Let X be the number of unprovoked shark attacks that
will occur off the coast of Florida next year.

I Model X ∼ Poisson(λ).

I From the shark data at http://www.flmnh.ufl.edu/
fish/sharks/statistics/FLactivity.htm, 246
unprovoked shark attacks occurred from 2000 to 2009.

I Hence, I calculate:

λ =
246 (units attack)

1 (unit of 10 years)
· 1 (unit of 10 years)

10 (units year)

=
24.6 (units attack)

1(unit year)
= 24.6 attacks per year
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Example: shark attacks

P(no attacks next year) = f (0) = e−24.6 · 24.60

0!

≈ 2.07 × 10−11

P(at least 5 attacks) = 1 − P(at most 4 attacks)

= 1 − F (4)

= 1 − f (0) − f (1) − f (2) − f (3) − f (4)

= 1 − e−24.6 24.60

0!
− e−24.6 24.61

1!
− e−24.6 24.62

2!

− e−24.6 24.63

3!
− e−24.6 24.64

4!
≈ 0.9999996

P(more than 30 attacks) = 1 − P(at least 30 attacks)

= 1 − e−24.6
30∑
i=0

24.6x

x!
= 1 − e−24.6 · 4.251 × 1010

≈ 0.1193
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Example: shark attacks

I Now, let Y be the total number of shark attacks in
Florida during the next 4 months.

I Let Y ∼ Poisson(θ), where θ is the true shark attack
rate per 4 months:

θ =
24.6 (units attack)

1 (unit year)
· 1/3 (unit year)

1 (unit of 4 months)

=
8.2 (units attack)

1 (unit of 4 months)
= 8.2 attacks per 4 months
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Example: shark attacks

P(no attacks next year) = f (0) = e−8.2 · 8.20

0!
≈ 0.000275

P(at least 5 attacks) = 1 − P(at most 4 attacks)

= 1 − F (4)

= 1 − f (0) − f (1) − f (2) − f (3) − f (4)

= 1 − e−8.2 8.20

0!
− e−8.2 8.21

1!
− e−8.2 8.22

2!

− e−8.2 8.23

3!
− e−8.2 8.24

4!
≈ 0.9113

P(more than 30 attacks) = 1 − P(at least 30 attacks)

= 1 − e−8.2
30∑
i=0

8.2x

x!
= 1 − e−8.2 · 4.251 × 1010

≈ 9.53 × 10−10
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