Special Discrete Random Variables (Ch. 5.1)

Will Landau
Iowa State University

Feb 19, 2013

Outline

Special Discrete Random Variables (Ch. 5.1)

Will Landau

Binomial
Distribution

Binomial Distribution

Geometric Distribution

Poisson Distribution

The Binomial Distribution

- $X \sim \operatorname{Binomial}(n, p)$ - i.e., X is distributed as a binomial random variable with parameters n and p

Binomial
Distribution
Geometric
Distribution $(0<p<1)$ if:

$$
f_{X}(x)= \begin{cases}\binom{n}{x} p^{x}(1-p)^{n-x} & x=0, \ldots, n \\ 0 & \text { otherwise }\end{cases}
$$

where:

- $\binom{n}{x}=\frac{n!}{x!(n-x)!}$, read " n choose x "
- $n!=n \cdot(n-1) \cdots \cdots \cdot 2 \cdot 1$, the factorial function.
- $E(X)=n p$
- $\operatorname{Var}(X)=n p(1-p)$

The Binomial Distribution

Special Discrete
Random Variables
(Ch. 5.1)
Will Landau

Binomial
Distribution
Geometric
Distribution

Purpose of the binomial random variable

- A $\operatorname{Bin}(n, p)$ random variable counts the number of successes in n success-failure trials that:

Binomial
Distribution
Geometric
Distribution

- are independent of one another.
- each succeed with probability p.
- Examples:
- Number of conforming hexamine pellets in a batch of $n=50$ total pellets made from a pelletizing machine.
- Number of runs of the same chemical process with percent yield above 80%, given that you run the process a total of $n=1000$ times.
- Number of rivets that fail in a boiler of $n=25$ rivets within 3 years of operation. (Note; "success" doesn't always have to be good.)

Example: machine with 10 components

| 1 | 2 | 3 | 4 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- Suppose you have a machine with 10 independent components in series. The machine only works if all the components work.
- Each component succeeds with probability $p=0.95$ and fails with probability $1-p=0.05$.
- Let Y be the number of components that succeed in a given run of the machine. Then:

$$
Y \sim \operatorname{Binomial}(n=10, p=0.95)
$$

Example: machine with 10 components

$$
\begin{aligned}
P(\text { machine succeeds }) & =P(Y=10) \\
& =\binom{10}{10} p^{10}(1-p)^{10-10} \\
& =p^{10} \\
& =0.95^{10} \\
& =0.5987
\end{aligned}
$$

Binomial
Distribution

Distribution

- This machine isn't very reliable.

Example: machine with 10 components

Binomial
Distribution
Geometric
Distribution

- What if I arrange these 10 components in parallel? This machine succeeds if at least 9 of the components succeed.
- What is the probability that the new machine succeeds?

Example: machine with 10 components

P (improved machine succeeds)
Binomial
Distribution
Geometric
Distribution

$$
\begin{aligned}
& =P(Y \geq 9) \\
& =P(Y=9)+P(Y=10) \\
& =\binom{10}{9} p^{9}(1-p)+\binom{10}{10} p^{10}(1-p)^{10-10} \\
& =(10) \cdot 0.95^{9} \cdot 0.05+(1) \cdot 0.95^{10} \\
& =0.9139
\end{aligned}
$$

- By allowing just one component to fail, we made this machine far more reliable.

Example: machine with 10 components

- If we allow up to 2 components to fail:
P (improved machine succeeds)

Binomial
Distribution
Geometric
Distribution
Poisson
Distribution

$$
=P(Y \geq 8)
$$

$$
=P(Y=8)+P(Y=9)+P(Y=10)
$$

$$
=\binom{10}{8} p^{8}(1-p)^{10-8}+\binom{10}{9} p^{9}(1-p)+\binom{10}{10} p^{10}(1-p)^{10-10}
$$

$$
=\frac{10!}{(10-8)!8!} \cdot 0.95^{8} \cdot 0.05^{2}+(10) \cdot 0.95^{9} \cdot 0.05+(1) \cdot 0.95^{10}
$$

$$
=0.9885
$$

Example: machine with 10 components

Distribution

- $E(Y)=n p=10 \cdot 0.95=9.5$. So the number of components to fail per run on average is 9.5 .
- $\operatorname{Var}(Y)=n p(1-p)=10 \cdot 0.95 \cdot(1-0.95)=0.475$.
- $S D(Y)=\sqrt{\operatorname{Var}(Y)}=\sqrt{n p(1-p)}=0.689$.

Outline

Special Discrete Random Variables (Ch. 5.1)

Will Landau

Binomial
Distribution
Geometric
Distribution

Poisson
Distribution

Geometric Distribution

Poisson Distribution

Geometric random variables

- $X \sim \operatorname{Geometric}(p)$ - that is, X has a geometric distribution with parameter $p(0<p<1)$ - if its pmf is:

$$
f_{X}(x)= \begin{cases}p(1-p)^{x-1} & x=1,2,3, \ldots \\ 0 & \text { otherwise }\end{cases}
$$

Binomial
Distribution
Geometric
Distribution
Poisson
Distribution
and its cdf is:

$$
F_{X}(x)= \begin{cases}1-(1-p)^{x} & x=1,2,3, \ldots \\ 0 & \text { otherwise }\end{cases}
$$

- $E(X)=\frac{1}{p}$
- $\operatorname{Var}(X)=\frac{1-p}{p^{2}}$

A look at the $\operatorname{Geom}(p)$ distribution

 Random Variables (Ch. 5.1)Will Landau

Binomial
Distribution
Geometric
Distribution

Poisson
Distribution

Uses of the $X \sim \operatorname{Geom}(p)$

- For an indefinitely-long sequence of independent, success-failure trials, each with P (success) $=p, X$ is the number of trials it takes to get a success.
- Examples:
- Number of rolls of a fair die until you land a 5 .
- Number of shipments of raw material you get until you get a defective one.
- The number of enemy aircraft that fly close before one flies into friendly airspace.
- Number hexamine pellets you make before you make one that does not conform.
- Number of buses that come before yours.

Binomial
Distribution
Geometric
Distribution
Poisson
Distribution

Example: shorts in NiCad batteries

- An experimental program was successful in reducing the percentage of manufactured NiCad cells with internal shorts to around 1%.
- Let T be the test number at which the first short is discovered. Then, $T \sim \operatorname{Geom}(p)$.
$P(1$ st or 2 nd cell tested is has the 1 st short $)=P(T=1$ or $T=2)$

$$
\begin{aligned}
& =f(1)+f(2) \\
& =p+p(1-p) \\
& =0.01+0.01(1-0.01) \\
& =0.02
\end{aligned}
$$

$$
\begin{aligned}
P(\text { at least } 50 \text { cells tested w/o finding a short }) & =P(T>50) \\
& =1-P(T \leq 50) \\
& =1-F(50) \\
& =1-\left(1-(1-p)^{x}\right) \\
& =(1-p)^{x} \\
& =(1-0.01)^{50} \\
& =0.61
\end{aligned}
$$

Example: shorts in NiCad batteries

Random Variables
(Ch. 5.1)
Will Landau

Binomial
Distribution

$$
E(T)=\frac{1}{p}=\frac{1}{0.01}
$$

$=100$ tests for the first short to appear, on avg.

$$
\begin{aligned}
S D(T) & =\sqrt{\operatorname{Var}(T)}=\sqrt{\frac{1-p}{p^{2}}} \\
& =\sqrt{\frac{1-0.01}{0.01^{2}}}=99.5 \text { tested batteries }
\end{aligned}
$$

Outline

Special Discrete Random Variables (Ch. 5.1)

Will Landau

Binomial
Distribution

Geometric
Distribution

Binomial Distribution

Poisson random variables

- $X \sim \operatorname{Poisson}(\lambda)$ that is, X has a geometric distribution with parameter $\lambda>0$ - if its pmf is:

Binomial
Distribution

- $E(X)=\lambda$
- $\operatorname{Var}(X)=\lambda$

A look at the Poisson distribution

Random Variables
(Ch. 5.1)
Will Landau

Binomial
Distribution
Geometric Distribution

Poisson
Distribution

Meaning of the Poisson distribution

- A Poisson (λ) random variable counts the number of occurrences that happen over a fixed interval of time or space.
- These occurrences must:
- be independent
- be sequential in time (no two occurrences at once)
- occur at the same constant rate, λ.
- λ, the rate parameter, is the expected number of occurrences in the specified interval of time or space.

Examples

- Y is the number of shark attacks off the coast of CA next year. $\lambda=100$ attacks per year.
- Z is the number of shark attacks off the coast of CA next month. $\lambda=100 / 12=8.3333$ attacks per month

Binomial
Distribution
Geometric
Distribution
Poisson
Distribution

- N is the number of β particles emitted from a small bar of plutonium, registered by a Geiger counter, in a minute. $\lambda=$ 459.21 particles/minute.
- J is the number of particles per three minutes. $\lambda=$?

$$
\begin{aligned}
\lambda & =\frac{459.21 \text { (units particle) }}{1 \text { (unit minute) }} \cdot \frac{3 \text { (units minute) }}{1 \text { (unit of } 3 \text { minutes) }} \\
& =\frac{1377.63 \text { (units particle) }}{1 \text { (unit of } 3 \text { minutes) }}=1377.62 \text { particles per } 3 \text { minutes }
\end{aligned}
$$

Example: Rutherford/Geiger experiment

- Rutherford and Geiger measured the number of α particles detected near a small bar of plutonium for 8 -minute periods.
- The average number of particles per 8 minutes was $\lambda=3.87$ particles / 8 min .
- Let $S \sim$ Poisson (λ), the number of particles detected in the next 8 minutes.

Binomial
Distribution
Geometric
Distribution
Poisson

$$
\left.\begin{array}{rl}
f(s) & = \begin{cases}\frac{e^{-3.87}(3.87)^{s}}{s!} & s=0,1,2, \ldots \\
0 & \text { otherwise }\end{cases} \\
\begin{array}{rl}
P(\text { at least } 4 \text { particles recorded })
\end{array} \\
& =P(S \geq 4) \\
& =f(4)+f(5)+f(6)+\cdots \\
& =1-f(0)-f(1)-f(2)-f(3)
\end{array}\right\} \begin{aligned}
& \quad=1-\frac{e^{-3.87}(3.87)^{0}}{0!}-\frac{e^{-3.87}(3.87)^{1}}{1!} \\
& \\
& =0.54
\end{aligned}
$$

Example: arrival at a university library

- Some students' data indicate that between 12:00 and 12:10 P.M. on Monday through Wednesday, an average of around 125 students entered a library at lowa State University library.

Binomial
Distribution
Geometric
Distribution

- Let M be the number of students entering the ISU library between 12:00 and 12:01 PM next Tuesday.
- Model M ~ Poisson (λ).
- Having observed 125 students enter between 12:00 and 12:10 PM last Tuesday, we might choose:

$$
\begin{aligned}
\lambda & =\frac{125 \text { (units of student) }}{1(\text { unit of } 10 \text { minutes) }} \cdot \frac{1 \text { (unit of } 10 \text { minutes) }}{10 \text { (units of minute) }} \\
& =\frac{12.5 \text { (units of student) }}{1 \text { (unit minute) }}=12.5 \text { students per minute }
\end{aligned}
$$

Example: arrival at a university library

- Under this model, the probability that between 10 and 15 students arrive at the library between 12:00 and 12:01 PM is:

Binomial
Distribution
Geometric
Distribution
Poisson
Distribution

$$
\begin{aligned}
P(10 & \leq M \leq 15)=f(10)+f(11)+f(12)+f(13)+f(14)+f(15) \\
& =\frac{e^{-12.5}(12.5)^{10}}{10!}+\frac{e^{-12.5}(12.5)^{11}}{11!}+\frac{e^{-12.5}(12.5)^{12}}{12!} \\
& +\frac{e^{-12.5}(12.5)^{13}}{13!}+\frac{e^{-12.5}(12.5)^{14}}{14!}+\frac{e^{-12.5}(12.5)^{15}}{15!} \\
& =0.60
\end{aligned}
$$

Example: shark attacks

- Let X be the number of unprovoked shark attacks that will occur off the coast of Florida next year.
- Model $X \sim$ Poisson (λ).
- From the shark data at http://www.flmnh.ufl.edu/ fish/sharks/statistics/FLactivity.htm, 246 unprovoked shark attacks occurred from 2000 to 2009.
- Hence, I calculate:

$$
\begin{aligned}
\lambda & =\frac{246(\text { units attack })}{1(\text { unit of } 10 \text { years) }} \cdot \frac{1(\text { unit of } 10 \text { years) }}{10(\text { units year) }} \\
& =\frac{24.6 \text { (units attack) }}{1 \text { (unit year) }}=24.6 \text { attacks per year }
\end{aligned}
$$

Example: shark attacks

Special Discrete
$P($ no attacks next year $)=f(0)=e^{-24.6} \cdot \frac{24.6^{0}}{0!}$
$\approx 2.07 \times 10^{-11}$
$P($ at least 5 attacks $)=1-P($ at most 4 attacks $)$
$=1-F(4)$
$=1-f(0)-f(1)-f(2)-f(3)-f(4)$
$=1-e^{-24.6} \frac{24.6^{0}}{0!}-e^{-24.6} \frac{24.6^{1}}{1!}-e^{-24.6} \frac{24.6^{2}}{2!}$
$-e^{-24.6} \frac{24.6^{3}}{3!}-e^{-24.6} \frac{24.6^{4}}{4!}$
≈ 0.9999996
$P($ more than 30 attacks $)=1-P($ at least 30 attacks $)$
$=1-e^{-24.6} \sum_{i=0}^{30} \frac{24.6^{x}}{x!}=1-e^{-24.6} \cdot 4.251 \times 10^{10}$
≈ 0.1193

Example: shark attacks

- Now, let Y be the total number of shark attacks in Florida during the next 4 months.
- Let $Y \sim \operatorname{Poisson}(\theta)$, where θ is the true shark attack

Binomial
Distribution
Geometric
Distribution rate per 4 months:

$$
\begin{aligned}
\theta & =\frac{24.6 \text { (units attack) }}{1(\text { unit year) }} \cdot \frac{1 / 3 \text { (unit year) }}{1 \text { (unit of } 4 \text { months) }} \\
& =\frac{8.2 \text { (units attack) }}{1 \text { (unit of } 4 \text { months) }}=8.2 \text { attacks per } 4 \text { months }
\end{aligned}
$$

Example: shark attacks

Special Discrete
$P($ no attacks next year $)=f(0)=e^{-8.2} \cdot \frac{8.2^{0}}{0!}$ ≈ 0.000275
$P($ at least 5 attacks $)=1-P($ at most 4 attacks $)$

$$
\begin{aligned}
& =1-F(4) \\
& =1-f(0)-f(1)-f(2)-f(3)-f(4) \\
& =1-e^{-8.2} \frac{8.2^{0}}{0!}-e^{-8.2} \frac{8.2^{1}}{1!}-e^{-8.2} \frac{8.2^{2}}{2!} \\
& -e^{-8.2} \frac{8.2^{3}}{3!}-e^{-8.2} \frac{8.2^{4}}{4!} \\
& \approx 0.9113
\end{aligned}
$$

$P($ more than 30 attacks $)=1-P($ at least 30 attacks $)$

$$
\begin{aligned}
& =1-e^{-8.2} \sum_{i=0}^{30} \frac{8.2^{x}}{x!}=1-e^{-8.2} \cdot 4.251 \times 10^{10} \\
& \approx 9.53 \times 10^{-10}
\end{aligned}
$$

