Discrete Random
Variables (Ch. 5.1)
Will Landau

What is a random variable?

Probability
Discrete Random Variables (Ch. 5.1)
Probability Mass
Functions (pmf)
Cumulative
Distribution
Functions (cdf)

Will Landau
lowa State University

Feb 7, 2013

Outline

Discrete Random
Variables (Ch. 5.1)
Will Landau

What is a random

What is a random variable?

variable?
Probability
Probability Mass
Functions (pmf)
Cumulative
Distribution
Functions (cdf)
Expected Value
Variance and
Standard Deviation

What is a random variable?

- Random variable; a quantity that can be thought of as dependent on chance phenomena.
- $X=$ the value of a coin toss (heads or tails).
- $Z=$ the amount of torque required to loosen the next bolt.
- $T=$ the time you'll have to wait for the next bus home.

What is a random variable?

Probability
Probability Mass
Functions (pmf)
Cumulative
Distribution
Functions (cdf)

- $N=$ the number of defective widgets in manufacturing process in a day.
- $S=$ the number of provoked shark attacks off the coast of Florida next year.
- Two types:
- Discrete random variable: one that can only take on a set of isolated points (X, N, and S).
- Continuous random variable: one that can fall in an interval of real numbers (T and Z).

Discrete random variables

- A discrete random variable has a list of possible values:
- $X=$ roll of a 6 -sided fair die $=1,2,3,4,5$, or 6 .
- $Y=$ roll of a 6 -sided unfair die $=1,2,3,4,5$, or 6 .
- But how do you distinguish between X and Y ?

Outline

Discrete Random
Variables (Ch. 5.1)
Will Landau

What is a random

What is a random variable?

variable?
Probability

Probability

Probability Mass
Functions (pmf)
Cumulative
Distribution
Probability Mass Functions (pmf)
Functions (cdf)
Expected Value
Variance and
Cumulative Distribution Functions (cdf)
Standard Deviation

Expected Value

Variance and Standard Deviation

Probability

- $P(X=x)$, the probability that X equals x, is the fraction of times that X will land on x

1. We expect a fair die to land the number 3 roughly one out of every 6 tosses. Thus, $P(X=3)=1 / 6$
2. Suppose the unfair die is weighted so that the number 3 only lands one out of every 22 tosses. Then, $P(Y=3)=1 / 22$.

- X has the following probabilities:

Discrete Random Variables (Ch. 5.1)

Will Landau

What is a random variable?

Probability
Probability Mass
Functions (pmf)
Cumulative
Distribution
Functions (cdf)
Expected Value
Variance and
Standard Deviation

- Say Y has the probabilities:

Discrete Random Variables (Ch. 5.1)

Will Landau

What is a random variable?

Probability
Probability Mass
Functions (pmf)
Cumulative
Distribution
Functions (cdf)
Expected Value
Variance and
Standard Deviation

- S, the number of provoked shark attacks off FL next year, has infinite number of possible values. Here is one possible (made up) distribution:

Discrete Random
Variables (Ch. 5.1)
Will Landau

What is a random
variable?
Probability
Probability Mass
Functions (pmf)
Cumulative
Distribution
Functions (cdf)
Expected Value
Variance and
Standard Deviation

Outline

Discrete Random
Variables (Ch. 5.1)
Will Landau

What is a random

What is a random variable?

Probability

Probability Mass Functions (pmf)

Cumulative Distribution Functions (cdf)
Standard Deviation

Probability mass functions (pmf)

Discrete Random Variables (Ch. 5.1)

- The probability mass function (pmf) $f(x)$ of a random variable X is just $P(X=x)$
- X has $f(x)=1 / 6$
- S has $f(s)=\frac{1}{2^{s}} \frac{6}{\pi^{2}}$.
- We could also write f_{X} for the pmf of X and f_{S} for the pmf of S.

Probability
Probability Mass
Functions (pmf)
Cumulative
Distribution
Functions (cdf)
Expected Value
Variance and

- Rules of the pmf f :
- $f(x) \geq 0$ for all x.
- $\sum_{x} f(x)=1$.

Your turn: calculating probabilities

- Let $Z=$ the torque, rounded to the nearest integer, required to loosen the next bolt on an apparatus.

z	11	12	13	14	15
$f(z)=P(Z=z)$	0.03	0.03	0.03	0.06	0.26
z	16	17	18	19	20
$f(z)=P(Z=z)$	0.09	0.12	0.20	0.15	0.03

Discrete Random Variables (Ch. 5.1)

Will Landau

What is a random variable?

Probability
Probability Mass
Functions (pmf)
Cumulative
Distribution
Functions (cdf)
Expected Value
Variance and
Standard Deviation

- Calculate:

1. $P(Z \leq 14)$
2. $P(Z>16)$
3. $P(Z$ is an even number $)$
4. $P(Z$ in $\{15,16,18\})$

Answers: calculating probabilities

Discrete Random Variables (Ch. 5.1)

Will Landau

1.

$$
\begin{aligned}
P(Z \leq 14) & =P(Z=11 \text { or } Z=12 \text { or } Z=13 \text { or } Z=14) \\
& =P(Z=11)+P(Z=12)+P(Z=13)+P(Z=14) \\
& =f(11)+f(12)+f(13)+f(14) \\
& =0.03+0.03+0.03+0.06 \\
& =0.15
\end{aligned}
$$

Probability
Probability Mass
Functions (pmf)
Cumulative
Distribution
Functions (cdf)
Expected Value
Variance and
Standard Deviation

$$
\begin{aligned}
P(Z>16) & =P(Z=17 \text { or } Z=18 \text { or } Z=19 \text { or } Z=20) \\
& =P(Z=17)+P(Z=18)+P(Z=19)+P(Z=20) \\
& =f(17)+f(18)+f(19)+f(20) \\
& =0.12+0.20+0.15+0.03 \\
& =0.5
\end{aligned}
$$

Answers: calculating probabilities

Discrete Random Variables (Ch. 5.1)

Will Landau

3.

$$
\begin{aligned}
P(Z \text { even })= & P(Z=12 \text { or } Z=14 \text { or } Z=16 \text { or } Z=18 \text { or } Z=20) \\
= & P(Z=12)+P(Z=14)+P(Z=16)+P(Z=18) \\
& +P(Z=20) \\
= & f(12)+f(14)+f(16)+f(18)+f(20) \\
= & 0.03+0.06+0.09+0.20+0.03 \\
= & 0.41
\end{aligned}
$$

What is a random variable?

Probability
Probability Mass
Functions (pmf)
Cumulative
Distribution
Functions (cdf)
Expected Value
Variance and
4.

$$
\begin{aligned}
P(Z \text { in }\{15,16,18\}) & =P(Z=15 \text { or } Z=16 \text { or } Z=18) \\
& =P(Z=15)+P(Z=16)+P(Z=18) \\
& =f(15)+f(16)+f(18) \\
& =0.26+0.09+0.02 \\
& =0.37
\end{aligned}
$$

Outline

Discrete Random
Variables (Ch. 5.1)
Will Landau

What is a random

What is a random variable?

variable?
Probability

Probability

Probability Mass Functions (pmf)

Cumulative Distribution Functions (cdf)

Expected Value

Variance and Standard Deviation

The cumulative distribution function (cdf)

- Cumulative distribution function (cdf): a function, F, defined by:

$$
\begin{aligned}
F(x) & =P(X \leq x) \\
& =\sum_{z \leq x} f(z)
\end{aligned}
$$

What is a random variable?

Probability
Probability Mass
Functions (pmf)
Cumulative
Distribution
Functions (cdf)
Expected Value
Variance and
Standard Deviation

- F has the following properties:
- $F(x) \geq 0$ for all real numbers x.
- F is monotonically increasing.
- $\lim _{x \rightarrow-\infty} F(x)=0$
- $\lim _{x \rightarrow \infty} F(x)=1$
- When statisticians say "distribution", they mean cdf.

Example: torque random variable, Z

z, Torque	$f(z)=P[Z=z]$	$F(z)=P[Z \leq z]$
11	.03	.03
12	.03	.06
13	.03	.09
14	.06	.15
15	.26	.41
16	.09	.50
17	.12	.62
18	.20	.82
19	.15	.97
20	.03	1.00

Discrete Random Variables (Ch. 5.1)

Will Landau

What is a random variable?

Probability
Probability Mass
Functions (pmf)
Cumulative
Distribution
Functions (cdf)
Expected Value
Variance and
Standard Deviation

Example: torque random variable, Z

Discrete Random Variables (Ch. 5.1)

Will Landau

What is a random variable?

Probability
Probability Mass
Functions (pmf)
Cumulative
Distribution
Functions (cdf)
Expected Value
Variance and
Standard Deviation

Your turn: calculating probabilities

Discrete Random
Variables (Ch. 5.1)
Will Landau

What is a random variable?

Probability
Probability Mass
Functions (pmf)
Cumulative
Distribution
Functions (cdf)
Expected Value
Variance and
Standard Deviation

- Using the cdf only, calculate:

1. $\mathrm{F}(10.7)$
2. $P(Z \leq 15.5)$
3. $P(12.1<Z \leq 14)$
4. $P(15 \leq Z<18)$

Answers: calculating probabilities

Discrete Random Variables (Ch. 5.1)

Will Landau

1. $\quad F(10.7)=P(Z \leq 10.7)=0$
2. $P(Z \leq 15.5)=P(Z \leq 15)=0.41$
3.

$$
\begin{aligned}
P(12.1<Z \leq 14)= & P(Z=13 \text { or } 14) \\
= & f(14)+f(13) \\
= & {[f(14)+f(13)+f(12)+f(11)] } \\
& -[f(12)+f(11)] \\
= & P(Z \leq 14)-P(Z \leq 12) \\
= & F(14)-F(12) \\
= & 0.15-0.06 \\
= & 0.09
\end{aligned}
$$

What is a random variable?

Probability
Probability Mass
Functions (pmf)
Cumulative
Distribution
Functions (cdf)
Expected Value
Variance and
Standard Deviation

Answers: calculating probabilities

Probability
4.

$$
\begin{aligned}
P(15 \leq Z<18) & =P(Z=15,16, \text { or } 17) \\
& =P(Z \leq 17)-P(Z \leq 14) \\
& =F(17)-F(14) \\
& =0.62-0.15 \\
& =0.47
\end{aligned}
$$

Probability Mass Functions (pmf)

Cumulative
Distribution
Functions (cdf)
Expected Value
Variance and
Standard Deviation

Your turn: drawing the cdf

Discrete Random
Variables (Ch. 5.1)
Will Landau

What is a random
variable?
Probability
Probability Mass
Functions (pmf)

- Say we have a random variable Q with pmf:

q	1	2	3	7
$f(q)$	0.34	0.1	0.22	0.34

Cumulative
Distribution
Functions (cdf)
Expected Value
Variance and
Standard Deviation

- Draw the cdf.

Answer: drawing the cdf

Discrete Random
Variables (Ch. 5.1)
Will Landau
CDF of Q

Outline

Discrete Random
Variables (Ch. 5.1)
Will Landau

What is a random

What is a random variable?

variable?
Probability
Probability Mass
Functions (pmf)
Cumulative
Distribution
Probability Mass Functions (pmf)
Functions (cdf)
Expected Value
Variance and
Standard Deviation

Expected Value

Variance and Standard Deviation

Expected Value

- The expected value $E(X)$ (also called μ) of a random variable X is given by:

$$
\sum_{x} x \cdot f(x)
$$

Discrete Random Variables (Ch. 5.1)

- When X is the roll of a fair die,

$$
\begin{aligned}
E(X) & =1 f(1)+2 f(2)+3 f(3)+4 f(4)+5 f(5)+6 f(6) \\
& =1(1 / 6)+2(1 / 6)+3(1 / 6)+4(1 / 6)+5(1 / 6)+6(1 / 6) \\
& =\frac{1+2+3+4+5+6}{6} \\
& =3.5
\end{aligned}
$$

- $E(X)$ is a weighted average of the possible values of X, weighted by their probabilities.
- $E(X)$ is the mean of the distribution of X

Your turn: expected value

y	1	2	3	4	5	6
$P(Y=y)$	$5 / 22$	$7 / 44$	$1 / 22$	$7 / 44$	$2 / 11$	$5 / 22$

Discrete Random Variables (Ch. 5.1)

Will Landau

What is a random variable?

Probability
Probability Mass
Functions (pmf)
Cumulative
Distribution
Functions (cdf)
Expected Value
Variance and
Standard Deviation

- Calculate $E(Y)$, the expected value of a toss of the unfair die.

Answer: expected value

Discrete Random Variables (Ch. 5.1)

Will Landau

$$
\begin{aligned}
E(Y)= & 1(5 / 22)+2(7 / 44)+3(1 / 22) \\
& +4(7 / 44)+5(2 / 11)+6(5 / 22) \\
= & 3.5909
\end{aligned}
$$

What is a random
variable?
Probability
Probability Mass

Functions (pmf)
Cumulative

- The average roll of the unfair die is 3.5909 .

Distribution
Functions (cdf)

- $E(Y)$ is the mean of the distribution of Y.

Expected Value
Variance and
Standard Deviation

Your turn: expected value

Discrete Random Variables (Ch. 5.1)

z	11	12	13	14	15
$f(z)=P(Z=z)$	0.03	0.03	0.03	0.06	0.26
z	16	17	18	19	20
$f(z)=P(Z=z)$	0.09	0.12	0.20	0.15	0.03

Probability Mass
Functions (pmf)
Cumulative
Distribution
Functions (cdf)
Expected Value
Variance and
Standard Deviation

- Calculate $E(Z)$, the expected value of the torque required to loosen the next bolt.

Answer: expected value

Discrete Random Variables (Ch. 5.1) Will Landau

What is a random variable?

Probability
Probability Mass
Functions (pmf)

$$
\begin{aligned}
E(Z) & =11(0.03)+12(0.03)+13(0.03)+14(0.06)+15(0.26) \\
& =16(0.09)+17(0.12)+18(0.20)+19(0.15)+20(0.03) \\
& =16.35
\end{aligned}
$$

Cumulative
Distribution
Functions (cdf)
Expected Value
Variance and
Standard Deviation

- The average torque required to loosen the next bolt is 16.35 units.

Outline

Discrete Random
Variables (Ch. 5.1)
Will Landau

What is a random

What is a random variable?

variable?
Probability
Probability Mass
Functions (pmf)
Cumulative
Distribution
Functions (cdf)
Expected Value
Variance and
Standard Deviation

Expected Value

Variance and Standard Deviation

Variance

- Variance: the variance $\operatorname{Var}(X)$ (also called σ^{2}) of a random variable X is given by:

$$
\operatorname{Var}(X)=\sum_{x}(x-E(X))^{2} f(x)
$$

Discrete Random Variables (Ch. 5.1)

Will Landau

What is a random variable?

Probability
Probability Mass
Functions (pmf)
Cumulative
Distribution
Functions (cdf)

- Shortcut formulas:

$$
\begin{aligned}
\operatorname{Var}(X) & =\left[\sum_{x} x^{2} f(x)\right]-(E(X))^{2} \\
& =E\left(X^{2}\right)-E^{2}(X)
\end{aligned}
$$

- The variance is the average squared deviation of random variable from its mean.
- Standard deviation: $S D(X)=\sigma=\sqrt{\operatorname{Var}(X)}$

Example: calculating the variance

q	1	2	3	7
$f(q)$	0.34	0.1	0.22	0.34

- Long way:

$$
\begin{aligned}
E(Q)= & 1(0.34)+2(0.1)+3(0.22)+7(0.34) \\
= & 3.58 \\
\operatorname{Var}(Q)= & (1-3.58)^{2} 0.34+(2-3.58)^{2} 0.1 \\
& \quad+(3-3.58)^{2} 0.22+(7-3.58)^{2} 0.34 \\
= & 6.56
\end{aligned}
$$

Probability

Probability Mass
Functions (pmf)
Cumulative
Distribution
Functions (cdf)
Expected Value
Variance and

- Short way:

$$
\begin{aligned}
E\left(Q^{2}\right) & =\sum_{q} q^{2} f(q) \\
& =1(0.34)+4(0.1)+9(0.22)+49(0.34) \\
& =19.38 \\
\operatorname{Var}(Q) & =E\left(Q^{2}\right)-E^{2}(Q) \\
& =19.38-3.58^{2} \\
& =6.56
\end{aligned}
$$

Your turn: calculating the variance

What is a random variable?

Probability
Probability Mass
Functions (pmf)

x	1	2	3	4	5	6
$f(x)$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$

- Calculate $\operatorname{Var}(X)$
- Calculate $S D(X)$

Cumulative
Distribution
Functions (cdf)
Expected Value
Variance and
Standard Deviation

Your turn: answers

Discrete Random Variables (Ch. 5.1)

Will Landau

What is a random variable?

Probability

$$
\begin{aligned}
E(X) & =1(1 / 6)+2(1 / 6)+3(1 / 6)+4(1 / 6)+5(1 / 6)+6(1 / 6) \\
& =3.5
\end{aligned}
$$

Probability Mass
Functions (pmf)

$$
E\left(X^{2}\right)=\sum_{x=1}^{6} x^{2} f(x)
$$

Cumulative

Distribution
Functions (cdf)

$$
=1^{2}(1 / 6)+2^{2}(1 / 6)+3^{2}(1 / 6)+4^{2}(1 / 6)+5^{2}(1 / 6)+6^{2}(1 / 6)
$$

Expected Value
Variance and

$$
=15.17
$$

Standard Deviation

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left(X^{2}\right)-E^{2}(X) \\
& =15.17-3.5^{2} \\
& =2.92
\end{aligned}
$$

- $S D(X)=\sqrt{2.92}=1.7088$

