Describing Relationships Among Variables (Ch. 4)

Will Landau

Iowa State University

March 24, 2013

Describing Relationships Among Variables (Ch. 4)

Will Landau

Polynomial Regression

Outline

Polynomial Regression

Multiple Regression

Describing Relationships Among Variables (Ch. 4)

Will Landau

Polynomial Regression

Polynomial Regression

Simple linear regression: fit a line:

$$y_i \approx b_0 + b_1 x_i$$

Polynomial regression: fit a polynomial:

$$y_i \approx b_0 + b_1 x_i + b_2 x_i^2 + b_3 x_i^3 + \dots + b_{p-1} x_i^{p-1}$$

The p coefficients b₀, b₁,..., b_{p-1} are estimated by minimizing the loss function below using the least squares principle:

$$S(b_0, \ldots, b_{p-1}) = \sum_{i=1}^n (y_i - (b_0 + b_1 x_i + \cdots + b_{p-1} x_i^{p-1}))^2$$

 In practice, we make a computer find the coefficients for us. This class uses JMP 10, a statistical software tool.

© Will Landau

Iowa State University

Describing Relationships Among Variables (Ch. 4)

Will Landau

Polynomial Regression

Example: fly ash cylinders

- A researcher studied the compressive strength of concrete-like fly ash cylinders. The cylinders were made with varying amounts of ammonium phosphate as an additive.
- We want to investigate the relationship between the amount ammonium phosphate added and compressive strength.

x, Ammonium Phosphate (%)	y, Compressive Strength (psi)	x, Ammonium Phosphate (%)	y, Compressive Strength (psi)
0	1221	3	1609
0	1207	3	1627
0	1187	3	1642
1	1555	4	1451
1	1562	4	1472
1	1575	4	1465
2	1827	5	1321
2	1839	5	1289
2	1802	5	1292

Additive Concentrations and Compressive Strengths for Fly Ash Cylinders

Describing Relationships Among Variables (Ch. 4)

Will Landau

Polynomial Regression

Simple linear regression fit: $\hat{y}_i = 1498.4 - .6381x_i$

x	у	ŷ	$e = y - \hat{y}$	x	у	ŷ	$e = y - \hat{y}$
0	1221	1498.4	-277.4	3	1609	1496.5	112.5
0	1207	1498.4	-291.4	3	1627	1496.5	130.5
0	1187	1498.4	-311.4	3	1642	1496.5	145.5
1	1555	1497.8	57.2	4	1451	1495.8	-44.8
1	1562	1497.8	64.2	4	1472	1495.8	-23.8
1	1575	1497.8	77.2	4	1465	1495.8	-30.8
2	1827	1497.2	329.8	5	1321	1495.2	-174.2
2	1839	1497.2	341.8	5	1289	1495.2	-206.2
2	1802	1497.2	304.8	5	1292	1495.2	-203.2

Describing Relationships Among Variables (Ch. 4)

Will Landau

Polynomial Regression

Multiple Regression

(C)

Quadratic fit: $\hat{y}_i = 1242.9 + 382.7x - 76.7x_i^2$

Regression Analysis

The regressi y = 1243 + 3				
Predictor Constant x x**2	Coef 1242.89 382.67 -76.661	StDev 42.98 40.43 7.762	T 28.92 9.46 -9.88	P 0.000 0.000 0.000
S = 82.14	R-Sq = 8	86.7% R-S	q(adj) = 8	4.9%

Analysis of Variance

Source Regression Residual Er Total	ror	DF 2 15 17	SS 658230 101206 759437	MS 329115 6747	F 48.78	P 0.000	
Source x x**2	DF 1 1		eq SS 21 88209				

Describing Relationships Among Variables (Ch. 4)

Will Landau

Polynomial Regression

Quadratic fit: $\hat{y}_i = 1242.9 + 382.7x - 76.7x_i^2$

Describing Relationships Among Variables (Ch. 4)

Will Landau

Polynomial Regression

 $R^2 = 86.7\%$

- The parabolic fit explained 86.7% of the variation in compressive strength.
- Note: for polynomial regression (and later, multiple regression) R² does not equal the squared correlation r_{xy} between x and y.

• Instead,
$$R^2 = r_{y\widehat{y}}$$
:

$$r_{y\widehat{y}} = \frac{\sum(y_i - \overline{y})(\widehat{y}_i - \overline{\widehat{y}}_i)}{\sqrt{\sum(y_i - \overline{y})^2}\sqrt{\sum(\widehat{y}_i - \overline{\widehat{y}}_i)^2}}$$

Describing Relationships Among Variables (Ch. 4)

Will Landau

Polynomial Regression

Residuals for the quadratic fit have less of a pattern than those of the linear fit.

Describing Relationships Among Variables (Ch. 4)

Will Landau

Polynomial Regression

Cubic fit: ý	$\hat{v}_i = 11$	88 + 633	5x - 214	$4x^{2}2 +$	18.3 <i>x</i> ³	Describing Relationships <i>Among</i> Variables (Ch. 4)
Dognosoion Arro	lucio	-				Will Landau
Regression Ana	IIYSIS					Polynomial Regression
						Regression
The regression						Multiple Regression
y = 1188 + 633	5 X - 214)	X**2 + 18.3 2	X**3			Regression
Predictor	Coef	StDev	т	Р		
	1188.05	28.79	41.27	0.000		
x	633.11	55.91	11.32	0.000		
x**2	-213.77	27.79	-7.69	0.000		
x**3	18.281	3.649	5.01	0.000		
S = 50.88	R-Sq = 1	95.2% R-3	Sq(adj) = 9	4.2%		
Analysis of Va	riance					
Source	DF	SS	MS	F	Р	
Regression	3	723197	241066	93.13	0.000	
Residual Error	-	36240	2589	00.10	2.000	
Total	17	759437				

Cubic fit: $\hat{y}_i = 1188 + 633x - 214x^2 + 18.3x^3$

Describing Relationships Among Variables (Ch. 4)

Will Landau

Polynomial Regression

R^2 rose to 95.2%, and the residual plot improved.

Describing Relationships Among Variables (Čh. 4)

Will Landau

Polynomial Regression

Outline

Polynomial Regression

Multiple Regression

Describing Relationships Among Variables (Ch. 4)

Will Landau

Polynomial Regression

Multiple Regression

Multiple Regression: regression on multiple variables:

$$y_i \approx b_0 + b_1 x_{i,1} + b_2 x_{i,2} + b_3 x_{i,3} + \dots + b_{p-1} x_{i,p-1}$$

The p coefficients b₀, b₁,..., b_{p-1} are estimated by minimizing the loss function below using the least squares principle:

$$S(b_0,\ldots,b_p) = \sum_{i=1}^{n} (y_i - (b_0 + b_1 x_{i,1} + \cdots + b_{p-1} x_{i,p-1}))^2$$

 In practice, we make a computer find the coefficients for us. This class uses JMP 10. Describing Relationships Among Variables (Ch. 4)

Will Landau

Polynomial Regression

Example: New York rivers data

• Nitrogen content is a measure of river pollution.

Variable	Definition
Y	Mean nitrogen concentration (mg/liter) based on samples taken at regular intervals during the spring, summer, and fall months
X_1	Agriculture: percentage of land area currently in agricultural use
X_2	Forest: percentage of forest land
X_3	Residential: percentage of land area in residential use
X_4	Commercial/Industrial: percentage of land area in either commercial or industrial use

I will fit each of:

$$\widehat{y}_i = b_0 + b_1 x_{i,1} \widehat{y}_i = b_0 + b_1 x_{i,1} + b_2 x_{i,2} + b_3 x_{i,3} + b_4 x_{i,4}$$

and evaluate fit quality.

Describing Relationships Among Variables (Ch. 4)

Will Landau

Polynomial Regression

Example: New York rivers data

Row	River	Y	X_1	X_2	X_3	X_4
1	Olean	1.10	26	63	1.2	0.29
2	Cassadaga	1.01	29	57	0.7	0.09
3	Oatka	1.90	54	26	1.8	0.58
4	Neversink	1.00	2	84	1.9	1.98
5	Hackensack	1.99	3	27	29.4	3.11
6	Wappinger	1.42	19	61	3.4	0.56
7	Fishkill	2.04	16	60	5.6	1.11
8	Honeoye	1.65	40	43	1.3	0.24
9	Susquehanna	1.01	28	62	1.1	0.15
10	Chenango	1.21	26	60	0.9	0.23
11	Tioughnioga	1.33	26	53	0.9	0.18
12	West Canada	0.75	15	75	0.7	0.16
13	East Canada	0.73	6	84	0.5	0.12
14	Saranac	0.80	3	81	0.8	0.35
15	Ausable	0.76	2	89	0.7	0.35
16	Black	0.87	6	82	0.5	0.15
17	Schoharie	0.80	22	70	0.9	0.22
18	Raquette	0.87	4	75	0.4	0.18
19	Oswegatchie	0.66	21	56	0.5	0.13
20	Cohocton	1.25	40	49	1.1	0.13

Describing Relationships *Among* Variables (Ch. 4)

Will Landau

Polynomial Regression

It looks like the data could be roughly linear, although there are too few points to be sure.

© Will Landau

$\hat{y}_i = b_0 + b_1 x_{i,1}$: pollution vs. agricultural land.

Linear I	Fit							
Linear Fi	it							
Nitrogen = 0.9	9269285	+ 0.	0118851*	Agr	,			
Summa	ary of I	Fit						
RSquare			0.	160	762			
RSquare A				114	137			
Root Mean		Erro	r 0.		975			
Mean of Re	esponse			1.1	575			
Observatio	ns (or Su	ım V	Vgts)		20			
► Lack O	f Fit							
Analysi	is of V	ari	ance					
			Sum of					
Source	DF	5	Squares	Me	ean Squa	re	F Rat	io
Model	1	0.5	823712		0.5823	71	3.448	30
Error	18	3.0	402038		0.1689	00	Prob >	F
C. Total	19	3.6	6225750				0.079	8
Parame	eter Es	tin	nates					
Term	Estim	ate	Std Err	or	t Ratio	Pr	ob>iti	
Intercept	0.92692	285	0.1544	78	6.00	<	.0001*	
Agr	0.01188	351	0.0064	01	1.86	0	0798	

Describing Relationships Among Variables (Ch. 4)

Will Landau

Polynomial Regression

$\hat{y}_i = b_0 + b_1 x_{i,1}$: pollution vs. agricultural land.

Describing Relationships Among Variables (Ch. 4)

Will Landau

Polynomial Regression

Conclusions: $\hat{y}_i = b_0 + b_1 x_{i,1}$

- A low R² means the model isn't very useful for predicting the pollution of other New York rivers outside our dataset.
- However, the lack of a pattern in the residual plot shows that the model is valid.
- The residuals depart from a bell shape slightly, but not enough to interfere with statistical inference.

Describing Relationships Among Variables (Ch. 4)

Will Landau

Polynomial Regression

 $\hat{y}_i = b_0 + b_1 x_{i,1} + b_2 x_{i,2} + b_3 x_{i,3} + b_4 x_{i,4}$

Respo	onse Nitro	ogen								
Summa	ary of Fit									
RSquare 0.709398										
RSquare A		0.63								
	n Square Erro									
Mean of R			1575							
Observatio	ons (or Sum \	/vgts)	20							
Analys	is of Vari	ance								
Sum of										
Source	DF S	Squares M	ean Squa	re F Rati	0					
Model		5698462	0.6424		_					
Error		0527288	0.0701		•					
C. Total	19 3.0	6225750		0.0006	57					
Param	eter Estir	nates								
Term	Estimate	Std Error	t Ratio	Prob>iti						
Intercept	1.7222135									
Agr	0.0058091									
Forest	-0.012968									
Rsdntial	-0.007227									
ComIndl	0.3050278	0.163817	1.86	0.0823						

Describing Relationships Among Variables (Ch. 4)

Will Landau

Polynomial Regression

Full model: observed pollution values vs fitted values

Describing

Relationships Among Variables

(Čh. 4) Will Landau

Full model: residual plots

Describing Relationships *Among* Variables (Ch. 4)

Will Landau

Polynomial Regression

Conclusions: full model

- A higher R² indicates that the full model is more useful for predicting river pollution than the agriculture-only model.
- The residual plots show that the full model is valid too.

Describing Relationships Among Variables (Ch. 4)

Will Landau

Polynomial Regression

An even bigger model

From the scatterplot of y on x₄, it looks like x₄ needs at least a quadratic term.

Describing Relationships Among Variables (Ch. 4)

Will Landau

Polynomial Regression

Multiple Regression

I can fit the model:

$$\widehat{y}_i = b_0 + b_1 x_{i,1} + b_2 x_{i,2} + b_3 x_{i,3} + b_4 x_{i,4} + c x_{i,4}^2$$

which is a combination of polynomial regression and multiple regression.

The JMP Spreadsheet

● O O vivers.jmp									
 rivers.jmp Nource 		River	X1	X2	хз	X4	Y	X4^2	
	1	Olean	26	63	1.2	0.29	1.1	0.0841	
	2	Cassadaga	29	57	0.7	0.09	1.01	0.0081	
	3	Oatka	54	26	1.8	0.58	1.9	0.3364	
	- 4	Neversink	2	84	1.9	1.98	1	3.9204	
Columns (7/1)	5	Hackensack	3	27	29.4	3.11	1.99	9.6721	
River	6	Wappinger	19	61	3.4	0.56	1.42	0.3136	
X2	7	Fishkill	16	60	5.6	1.11	2.04	1.2321	
A X3	8	Honeoye	40	43	1.3	0.24	1.65	0.0576	
▲ X4	9	Susquehanna	28	62	1.1	0.15	1.01	0.0225	
4 Y	10	Chenango	26	60	0.9	0.23	1.21	0.0529	
🖌 X4^2 🕂	11	Tioughnioga	26	53	0.9	0.18	1.33	0.0324	
	12	West_Canada	15	75	0.7	0.16	0.75	0.0256	
	13	East_Canada	6	84	0.5	0.12	0.73	0.0144	
	14	Saranac	3	81	0.8	0.35	0.8	0.1225	
 Rows 	15	Ausable	2	89	0.7	0.35	0.76	0.1225	
All rows 20	16	Black	6	82	0.5	0.15	0.87	0.0225	
		Schoharie	22	70	0.9	0.22	0.8	0.0484	
Excluded	18	Raquette	4	75	0.4	0.18	0.87	0.0324	
		Oswegatchie	21	56	0.5	0.13	0.66	0.0169	
_abelled 0	20	Cohocton	40	49	1.1	0.13	1.25	0.0169	

Describing Relationships *Among* Variables (Ch. 4)

Will Landau

Polynomial Regression

R^2 improves

Summary of Fit

RSquare	0.897008
RSquare Adj	0.860226
Root Mean Square Error	0.163247
Mean of Response	1.1575
Observations (or Sum Wgts)	20

Analysis of Variance

		Sum of		
Source	DF	Squares	Mean Square	F Ratio
Model	5	3.2494798	0.649896	24.3867
Error	14	0.3730952	0.026650	Prob > F
C. Total	19	3.6225750		<.0001*

Parameter Estimates				
Term	Estimate	Std Error	t Ratio	Prob>lti
Intercept	1.2942455	0.765169	1.69	0.1129
X1	0.0049001	0.009266	0.53	0.6052
X2	-0.010462	0.008599	-1.22	0.2438
X3	0.0737788	0.026304	2.80	0.0140*
X4	1.2715886	0.216387	5.88	<.0001*
X4^2	-0.532452	0.105436	-5.05	0.0002*

Describing Relationships Among Variables (Ch. 4)

Will Landau

Polynomial Regression

Describing The model looks valid: no pattern in the residuals Relationships Among Variables (Čh. 4) 0.3 Will Landau . 0.2-Multiple Regression 0.1 Residual Y 0 -0.1 -0.2 -0.3--0.4 0.5 1.5 2 Predicted Y

© Will Landau

The model can be used for statistical inference: the residuals look normally distributed.

Describing Relationships Among Variables (Ch. 4)

Will Landau

Polynomial Regression