Describing Relationships Among Variables

 (Ch. 4)Will Landau

Iowa State University

March 24, 2013

Outline

Polynomial Regression

Multiple Regression

Polynomial Regression

- Simple linear regression: fit a line:

$$
y_{i} \approx b_{0}+b_{1} x_{i}
$$

Polynomial
Regression
Multiple
Regression

- Polynomial regression: fit a polynomial:

$$
y_{i} \approx b_{0}+b_{1} x_{i}+b_{2} x_{i}^{2}+b_{3} x_{i}^{3}+\cdots+b_{p-1} x_{i}^{p-1}
$$

- The p coefficients $b_{0}, b_{1}, \ldots, b_{p-1}$ are estimated by minimizing the loss function below using the least squares principle:

$$
S\left(b_{0}, \ldots, b_{p-1}\right)=\sum_{i=1}^{n}\left(y_{i}-\left(b_{0}+b_{1} x_{i}+\cdots+b_{p-1} x_{i}^{p-1}\right)\right)^{2}
$$

- In practice, we make a computer find the coefficients for us. This class uses JMP 10, a statistical software tool.

Example: fly ash cylinders

- A researcher studied the compressive strength of concrete-like fly ash cylinders. The cylinders were made with varying amounts of ammonium phosphate as an additive.
- We want to investigate the relationship between the amount ammonium phosphate added and compressive strength.

Additive Concentrations and Compressive Strengths for Fly Ash Cylinders

x, Ammonium Phosphate (\%)	y, Compressive Strength (psi)		x, Ammonium Phosphate (\%)	y, Compressive Strength (psi)
0	1221		3	1609
0	1207		3	1627
0	1187		3	1642
1	1555		4	1451
1	1562		4	1472
1	1575		4	1465
2	1827		5	1321
2	1839	5	1289	
2	1802		5	1292

Simple linear regression fit: $\widehat{y}_{i}=1498.4-.6381 x_{i}$

x	y	\hat{y}	$e=y-\hat{y}$	x	y	\hat{y}	$e=y-\hat{y}$
0	1221	1498.4	-277.4	3	1609	1496.5	112.5
0	1207	1498.4	-291.4	3	1627	1496.5	130.5
0	1187	1498.4	-311.4	3	1642	1496.5	145.5
1	1555	1497.8	57.2	4	1451	1495.8	-44.8
1	1562	1497.8	64.2	4	1472	1495.8	-23.8
1	1575	1497.8	77.2	4	1465	1495.8	-30.8
2	1827	1497.2	329.8	5	1321	1495.2	-174.2
2	1839	1497.2	341.8	5	1289	1495.2	-206.2
2	1802	1497.2	304.8	5	1292	1495.2	-203.2

Polynomial
Regression
Multiple
Regression

Quadratic fit: $\widehat{y}_{i}=1242.9+382.7 x-76.7 x_{i}^{2}$

Regression Analysis

The regression equation is $y=1243+383 x-76.7 x x^{* *} 2$

Predictor	Coef	StDev	T	P
Constant	1242.89	42.98	28.92	0.000
x	382.67	40.43	9.46	0.000
X**2	-76.661	7.762	-9.88	0.000
S = 82.14	R-Sq $=86.7 \%$	R-Sq $($ adj $)=84.9 \%$		

Analysis of Variance

Source		DF	SS	MS	F	P
Regression	2	658230	329115	48.78	0.000	
Residual	Error	15	101206	6747		
Total		17	759437			
Source	DF	Seq SS				
x	1	21				
X**2	1	658209				

Polynomial
Regression
Multiple
Regression

Quadratic fit: $\widehat{y}_{i}=1242.9+382.7 x-76.7 x_{i}^{2}$

Polynomial
Regression
Multiple
Regression

$R^{2}=86.7 \%$

- The parabolic fit explained 86.7% of the variation in compressive strength.

Polynomial
Regression
Multiple
Regression

- Note: for polynomial regression (and later, multiple regression) R^{2} does not equal the squared correlation $r_{x y}$ between x and y.
- Instead, $R^{2}=r_{y \hat{y}}$:

$$
r_{y \widehat{y}}=\frac{\sum\left(y_{i}-\bar{y}\right)\left(\hat{y}_{i}-\overline{\hat{y}}_{i}\right)}{\sqrt{\sum\left(y_{i}-\bar{y}\right)^{2}} \sqrt{\sum\left(\hat{y}_{i}-\overline{\hat{y}}_{i}\right)^{2}}}
$$

Residuals for the quadratic fit have less of a pattern than those of

 the linear fit.

Percent Ammonium Phosphate

Cubic fit: $\widehat{y}_{i}=1188+633 x-214 x^{2} 2+18.3 x^{3}$

Regression Analysis

The regression equation is
$y=1188+633 x-214 x * * 2+18.3 x^{\star *} 3$

Polynomial
Regression
Multiple
Regression

Predictor	Coef	StDev	T	P
Constant	1188.05	28.79	41.27	0.000
x	633.11	55.91	11.32	0.000
x**2	-213.77	27.79	-7.69	0.000
x** 3	18.281	3.649	5.01	0.000
$S=50.88$	$\mathrm{R}-\mathrm{Sq}=$		(adj) =	

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	3	723197	241066	93.13	0.000
Residual Error	14	36240	2589		
Total	17	759437			

Cubic fit: $\widehat{y}_{i}=1188+633 x-214 x^{2} 2+18.3 x^{3}$

R^{2} rose to 95.2%, and the residual plot improved.

Residual Plot for Cubic Fit: Residuals vs. Percent Ammonium Phosphat

Will Landau

Polynomial
Regression
Multiple
Regression

Outline

Polynomial Regression

Multiple Regression

Multiple Regression

- Multiple Regression: regression on multiple variables:

$$
y_{i} \approx b_{0}+b_{1} x_{i, 1}+b_{2} x_{i, 2}+b_{3} x_{i, 3}+\cdots+b_{p-1} x_{i, p-1}
$$

Polynomial
Regression
Multiple
Regression

- The p coefficients $b_{0}, b_{1}, \ldots, b_{p-1}$ are estimated by minimizing the loss function below using the least squares principle:

$$
S\left(b_{0}, \ldots, b_{p}\right)=\sum_{i=1}^{n}\left(y_{i}-\left(b_{0}+b_{1} x_{i, 1}+\cdots+b_{p-1} x_{i, p-1}\right)\right)^{2}
$$

- In practice, we make a computer find the coefficients for us. This class uses JMP 10.

Example: New York rivers data

- Nitrogen content is a measure of river pollution.

Variable	Definition
Y	Mean nitrogen concentration (mg/liter) based on samples taken at regular intervals during the spring, summer, and fall months
X_{1}	Agriculture: percentage of land area currently in agricultural use
X_{2}	Forest: percentage of forest land
X_{3}	Residential: percentage of land area in residential use
X_{4}	Commercial/Industrial: percentage of land area in either
	commercial or industrial use

- I will fit each of:

$$
\begin{aligned}
& \widehat{y}_{i}=b_{0}+b_{1} x_{i, 1} \\
& \widehat{y}_{i}=b_{0}+b_{1} x_{i, 1}+b_{2} x_{i, 2}+b_{3} x_{i, 3}+b_{4} x_{i, 4}
\end{aligned}
$$

and evaluate fit quality.

Example: New York rivers data

Row	River	Y	X_{1}	X_{2}	X_{3}	X_{4}
1	Olean	1.10	26	63	1.2	0.29
2	Cassadaga	1.01	29	57	0.7	0.09
3	Oatka	1.90	54	26	1.8	0.58
4	Neversink	1.00	2	84	1.9	1.98
5	Hackensack	1.99	3	27	29.4	3.11
6	Wappinger	1.42	19	61	3.4	0.56
7	Fishkill	2.04	16	60	5.6	1.11
8	Honeoye	1.65	40	43	1.3	0.24
9	Susquehanna	1.01	28	62	1.1	0.15
10	Chenango	1.21	26	60	0.9	0.23
11	Tioughnioga	1.33	26	53	0.9	0.18
12	West Canada	0.75	15	75	0.7	0.16
13	East Canada	0.73	6	84	0.5	0.12
14	Saranac	0.80	3	81	0.8	0.35
15	Ausable	0.76	2	89	0.7	0.35
16	Black	0.87	6	82	0.5	0.15
17	Schoharie	0.80	22	70	0.9	0.22
18	Raquette	0.87	4	75	0.4	0.18
19	Oswegatchie	0.66	21	56	0.5	0.13
20	Cohocton	1.25	40	49	1.1	0.13

Polynomial
Regression
Multiple
Regression
$\widehat{y}_{i}=b_{0}+b_{1} x_{i, 1}:$ pollution vs. agricultural land.

- Bivariate Fit of Nitrogen By Agr

- It looks like the data could be roughly linear, although there are too few points to be sure.
$\widehat{y}_{i}=b_{0}+b_{1} x_{i, 1}:$ pollution vs. agricultural land.

Linear Fit

Polynomial
Regression
Multiple
Regression

$\widehat{y}_{i}=b_{0}+b_{1} x_{i, 1}$: pollution vs. agricultural land.

Conclusions: $\widehat{y}_{i}=b_{0}+b_{1} x_{i, 1}$

- A low R^{2} means the model isn't very useful for predicting the pollution of other New York rivers outside our dataset.
- However, the lack of a pattern in the residual plot shows that the model is valid.
- The residuals depart from a bell shape slightly, but not enough to interfere with statistical inference.
$\widehat{y}_{i}=b_{0}+b_{1} x_{i, 1}+b_{2} x_{i, 2}+b_{3} x_{i, 3}+b_{4} x_{i, 4}$
- Response Nitrogen
- Summary of Fit

RSquare	0.709398
RSquare Adj	0.631904
Root Mean Square Error	0.264919
Mean of Response	1.1575
Observations (or Sum Wgts)	20

- Analysis of Variance
$\left.\begin{array}{lrrrr} & & \begin{array}{r}\text { Sum of } \\ \text { Squares }\end{array} & \text { Mean Square } & \text { F Ratio } \\ \text { Source } & \text { DF } & \text { Squar } & 0.5698462 & 0.642462\end{array}\right) 9.1542$.

F Parameter Estimates				
Term	Estimate	Std Error	t Ratio	Prob>lt\|
Intercept	1.7222135	1.234082	1.40	0.1832
Agr	0.0058091	0.015034	0.39	0.7046
Forest	-0.012968	0.013931	-0.93	0.3667
Rsdntial	-0.007227	0.03383	-0.21	0.8337
ComIndl	0.3050278	0.163817	1.86	0.0823

Full model: observed pollution values vs fitted values

- Bivariate Fit of Nitrogen By Predicted Nitrogen

Regression
Multiple
Regression

Full model: residual plots

Residual Nitrogen

Will Landau

Polynomial

Regression
Multiple
Regression

Conclusions: full model

- A higher R^{2} indicates that the full model is more useful for predicting river pollution than the agriculture-only model.
- The residual plots show that the full model is valid too.

An even bigger model

- From the scatterplot of y on x_{4}, it looks like x_{4} needs at least a quadratic term.

- I can fit the model:

$$
\widehat{y}_{i}=b_{0}+b_{1} x_{i, 1}+b_{2} x_{i, 2}+b_{3} x_{i, 3}+b_{4} x_{i, 4}+c x_{i, 4}^{2}
$$

which is a combination of polynomial regression and multiple regression.

The JMP Spreadsheet

(2)00								
- rivers.jmp - Source		River	X1	X2	X3	X4	Y	X4^2
	1	Olean	26	63	1.2	0.29	1.1	0.0841
	2	Cassadaga	29	57	0.7	0.09	1.01	0.0081
	3	Oatka	54	26	1.8	0.58	1.9	0.3364
- Columns (7/1)	4	Neversink	2	84	1.9	1.98	1	3.9204
	5	Hackensack	3	27	29.4	3.11	1.99	9.6721
Th River	6	Wappinger	19	61	3.4	0.56	1.42	0.3136
	7	Fishkill	16	60	5.6	1.11	2.04	1.2321
$\triangle \times 3$	8	Honeoye	40	43	1.3	0.24	1.65	0.0576
$\triangle \mathrm{X}_{4}$	9	Susquehanna	28	62	1.1	0.15	1.01	0.0225
$Y_{4^{\wedge} 2}+$	10	Chenango	26	60	0.9	0.23	1.21	0.0529
	11	Tioughnioga	26	53	0.9	0.18	1.33	0.0324
	12	West_Canada	15	75	0.7	0.16	0.75	0.0256
	13	East_Canada	6	84	0.5	0.12	0.73	0.0144
	14	Saranac	3	81	0.8	0.35	0.8	0.1225
- Rows	15	Ausable	2	89	0.7	0.35	0.76	0.1225
All rows 20	16	Black	6	82	0.5	0.15	0.87	0.0225
Selected 0	17	Schoharie	22	70	0.9	0.22	0.8	0.0484
Excluded 0	18	Raquette	4	75	0.4	0.18	0.87	0.0324
Hidden 0	19	Oswegatchie	21	56	0.5	0.13	0.66	0.0169
Labelled 0	20	Cohocton	40	49	1.1	0.13	1.25	0.0169

Polynomial
Regression
Multiple
Regression

- Summary of Fit

RSquare			0.897008	
RSquare Adj			0.860226	
Root Mean Square Error			0.163247	
Mean of Response			1.1575	
Observations (or Sum Wgts)			20	
Analysis of Variance				
Source	DF	Sum of Squares	Mean Square	F Ratio
Model	5	3.2494798	0.649896	24.3867
Error	14	0.3730952	0.026650	Prob $>$ F
C. Total	19	3.6225750		$<.0001^{*}$

Parameter Estimates

Term	Estimate	Std Error	t Ratio	Prob $>$ lt\|
Intercept	1.2942455	0.765169	1.69	0.1129
X1	0.0049001	0.009266	0.53	0.6052
X2	-0.010462	0.008599	-1.22	0.2438
X3	0.0737788	0.026304	2.80	0.0140^{\star}
X4	1.2715886	0.216387	5.88	$<.0001^{*}$
X4^2	-0.532452	0.105436	-5.05	0.0002^{*}

The model looks valid: no pattern in the residuals

The model can be used for statistical inference: the residuals look normally distributed.

