Descriptive Statistics: Part 2/2 (Ch 3)

Will Landau
lowa State University

January 24, 2013

Outline

Boxplots

Quantile-Quantile

Numerical Summaries

Parameters

Generic Boxplot

Theoretical
Quantile-Quantile Plots

Numerical
Summaries
Parameters

Example: bullet data

Quantiles of the Bullet Penetration Depth Distributions

i	$\frac{i-.5}{20}$	i th Smallest 230 Grain Data Point $=Q\left(\frac{i-.5}{20}\right)$	i th Smallest 200 Grain Data Point $=Q\left(\frac{i-5}{20}\right)$
1	. 025	27.75	58.00
2	. 075	37.35	58.65
3	. 125	38.35	59.10
4	. 175	38.35	59.50
5	. 225	38.75	59.80
6	. 275	39.75	60.70
7	. 325	40.50	61.30
8	. 375	41.00	61.50
9	. 425	41.15	62.30
10	. 475	42.55	62.65
11	. 525	42.90	62.95
12	. 575	43.60	63.30
13	. 625	43.85	63.55
14	. 675	47.30	63.80
15	. 725	47.90	64.05
16	. 775	48.15	64.65
17	. 825	49.85	65.00
18	. 875	51.25	67.75
19	. 925	51.60	70.40
20	. 975	56.00	71.70

Boxplots
Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantile Plots

Numerical
Summaries
Parameters

Example: bullet data (230-grain bullets)

$$
\begin{aligned}
Q(.25) & =.5 Q(.225)+.5 Q(.275)=.5(38.75)+.5(39.75)=39.25 \mathrm{~mm} \\
Q(.5) & =.5 Q(.475)+.5 Q(.525)=.5(42.55)+.5(42.90)=42.725 \mathrm{~mm} \\
Q(.75) & =.5 Q(.725)+.5 Q(.775)=.5(47.90)+.5(48.15)=48.025 \mathrm{~mm}
\end{aligned}
$$

So

Boxplots
Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantile Plots

Numerical
Summaries
Parameters

$$
\begin{aligned}
I Q R & =48.025-39.25=8.775 \mathrm{~mm} \\
1.5 I Q R & =13.163 \mathrm{~mm} \\
Q(.75)+1.5 I Q R & =61.188 \mathrm{~mm} \\
Q(.25)-1.5 I Q R & =26.087 \mathrm{~mm}
\end{aligned}
$$

Example: bullet data

Will Landau

Boxplots
Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantile Plots

Numerical
Summaries
Parameters

Outline

Boxplots
 Quantile-Quantile (QQ) Plots

Quantile-Quantile

Theoretical
Quantile-Quantile Plots

Numerical
Summaries
Parameters

Numerical Summaries

Parameters

- Quantile-quantile (QQ) plot: a scatterplot of the sorted values of one dataset on the sorted values of another dataset.
- Quantile-quantile (QQ) plot: a scatterplot of the sorted values of one dataset on the sorted values of another dataset.
- This plot is used to tell if the distributional shapes of the datasets are the same or different.
- Quantile-quantile (QQ) plot: a scatterplot of the sorted values of one dataset on the sorted values of another dataset.
- This plot is used to tell if the distributional shapes of the datasets are the same or different.
- If the points in the plot lie in a straight line, the distributional shapes are the same.

Boxplots
Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantile Plots

Numerical
Summaries
Parameters

- Quantile-quantile (QQ) plot: a scatterplot of the sorted values of one dataset on the sorted values of another dataset.
- This plot is used to tell if the distributional shapes of the datasets are the same or different.
- If the points in the plot lie in a straight line, the distributional shapes are the same.
- Otherwise, the shapes are different.
- Quantile-quantile (QQ) plot: a scatterplot of the sorted values of one dataset on the sorted values of another dataset.
- This plot is used to tell if the distributional shapes of the datasets are the same or different.
- If the points in the plot lie in a straight line, the distributional shapes are the same.
- Otherwise, the shapes are different.
- The datasets must be univariate, numerical, and of the same size.

Example: bullet data

Quantiles of the Bullet Penetration Depth Distributions
Will Landau

i	$\frac{i-.5}{20}$	i th Smallest 230 Grain Data Point $=Q\left(\frac{i-.5}{20}\right)$	i th Smallest 200 Grain Data Point $=Q\left(\frac{i-5}{20}\right)$
1	. 025	27.75	58.00
2	. 075	37.35	58.65
3	. 125	38.35	59.10
4	. 175	38.35	59.50
5	. 225	38.75	59.80
6	. 275	39.75	60.70
7	. 325	40.50	61.30
8	. 375	41.00	61.50
9	. 425	41.15	62.30
10	. 475	42.55	62.65
11	. 525	42.90	62.95
12	. 575	43.60	63.30
13	. 625	43.85	63.55
14	. 675	47.30	63.80
15	. 725	47.90	64.05
16	. 775	48.15	64.65
17	. 825	49.85	65.00
18	. 875	51.25	67.75
19	. 925	51.60	70.40
20	. 975	56.00	71.70

Boxplots
Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantile Plots

Numerical
Summaries

Parameters

Example: bullet data

- I can make a QQ plot of the bullet data by plotting the sorted 200-grain depths against the sorted 230-grain depths.

Boxplots
Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantile Plots

Numerical
Summaries
Parameters

Example: bullet data

- I can make a QQ plot of the bullet data by plotting the sorted 200 -grain depths against the sorted 230-grain depths.
- The points lie in approximately a straight line, so the 200-grain depths are similarly shaped in distribution to the 230-grain depths.

Boxplots
Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantile Plots

Numerical
Summaries
Parameters

Outline

Theoretical Quantile-Quantile Plots

Numerical Summaries

Parameters

- Theoretical quantile-quantile (QQ) plot: a

Theoretical quantile-quantile (QQ) plots

- Theoretical quantile-quantile (QQ) plot: a scatterplot with:
- The sorted values $x_{1}, x_{2}, \ldots x_{n}$ of some real data set on the x axis.

Boxplots
Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantile Plots

Numerical
Summaries

Parameters

Theoretical quantile-quantile (QQ) plots

- Theoretical quantile-quantile (QQ) plot: a scatterplot with:
- The sorted values $x_{1}, x_{2}, \ldots x_{n}$ of some real data set on the x axis.

Boxplots
the x axis.

- $Q\left(\frac{1-.5}{n}\right), Q\left(\frac{2-.5}{n}\right), \ldots, Q\left(\frac{n-.5}{n}\right)$ on the y axis.

Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantile Plots

Numerical
Summaries
Parameters

Theoretical quantile-quantile (QQ) plots

- Theoretical quantile-quantile (QQ) plot: a scatterplot with:
- The sorted values $x_{1}, x_{2}, \ldots x_{n}$ of some real data set on the x axis.
- $Q\left(\frac{1-.5}{n}\right), Q\left(\frac{2-.5}{n}\right), \ldots, Q\left(\frac{n-.5}{n}\right)$ on the y axis.
- Q is some theoretical quantile function: the quantile function we would expect from a dataset if that dataset had a certain shape.

Boxplots
Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantile Plots

Numerical
Summaries
Parameters

Theoretical quantile-quantile (QQ) plots

- Theoretical quantile-quantile (QQ) plot: a scatterplot with:
- The sorted values $x_{1}, x_{2}, \ldots x_{n}$ of some real data set on the x axis.

Boxplots
Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantile Plots

Numerical
Summaries
Parameters

- Example theoretical quantile functions:

Theoretical quantile-quantile (QQ) plots

- Theoretical quantile-quantile (QQ) plot: a
scatterplot with:
- The sorted values $x_{1}, x_{2}, \ldots x_{n}$ of some real data set on the x axis.
- $Q\left(\frac{1-.5}{n}\right), Q\left(\frac{2-.5}{n}\right), \ldots, Q\left(\frac{n-.5}{n}\right)$ on the y axis.
- Q is some theoretical quantile function: the quantile function we would expect from a dataset if that dataset had a certain shape.
- Example theoretical quantile functions:

Boxplots
Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantile Plots

Numerical
Summaries
Parameters

- "Standard" bell-shaped data should have:

$$
Q(p) \approx 4.9\left(p^{0.14}-(1-p)^{0.14}\right)
$$

Theoretical quantile-quantile (QQ) plots

- Theoretical quantile-quantile (QQ) plot: a scatterplot with:
- The sorted values $x_{1}, x_{2}, \ldots x_{n}$ of some real data set on the x axis.
- $Q\left(\frac{1-.5}{n}\right), Q\left(\frac{2-.5}{n}\right), \ldots, Q\left(\frac{n-.5}{n}\right)$ on the y axis.
- Q is some theoretical quantile function: the quantile function we would expect from a dataset if that dataset had a certain shape.
- Example theoretical quantile functions:

Boxplots
Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantile Plots

Numerical
Summaries
Parameters

- "Standard" bell-shaped data should have:

$$
Q(p) \approx 4.9\left(p^{0.14}-(1-p)^{0.14}\right)
$$

- "Exponentially distributed" data (a kind of highly right-skewed data) should have:

$$
Q(p) \approx-\lambda^{-1} \log (1-p)
$$

where λ is some constant.

Normal quantile-quantile (QQ) Plots

- Normal quantile-quantile (QQ) plot: a theoretical QQ plot where the quantile function, Q, is the quantile function for "standard" bell-shaped

Numerical
Summaries
Parameters

Normal quantile-quantile (QQ) Plots

- Normal quantile-quantile (QQ) plot: a theoretical QQ plot where the quantile function, Q, is the quantile (normally-distributed) data.

Summaries
Parameters

- If the points in a normal QQ plot are in a straight line, the dataset in question is bell-shaped. Otherwise, the data is not bell-shaped.

Example: towel breaking strength data

Breaking Strength and Standard Normal Quantiles

Boxplots
Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantile Plots

Numerical
Summaries
Parameters

Example: towel breaking strength data

- The points are roughly straight-line-shaped, so the breaking strength data is roughly bell-shaped.

Normal QQ plot: 200-grain bullet penetration

Boxplots

Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantile Plots

Numerical
Summaries
Parameters

Observations

- Since the points in the normal $Q Q$ plot are not quite arranged in a straight line, the 200-grain penetration depths are not quite bell-shaped. However, the departure from normality is not severe.

Observations

- Since the points in the normal $Q Q$ plot are not quite arranged in a straight line, the 200-grain penetration depths are not quite bell-shaped. However, the departure from normality is not severe.
- The QQ plot of the bullet data from before revealed that the 200-grain depths had the same distributional shape as the 200 -grain bullet depths. Thus, the 230-grain bullet data is not quite bell-shaped either.

Outline

Boxplots

Quantile-Quantile

Numerical Summaries

Parameters

Numerical summaries

- Numerical summary (statistic)
- A number or list of numbers calculated using the data (and only the data).

Boxplots
Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantile Plots

Numerical
Summaries
Parameters

Numerical summaries

- Numerical summary (statistic)
- A number or list of numbers calculated using the data (and only the data).
- Numerical summaries highlight important features of the data (shape, center, spread, outliers).

Boxplots
Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantile Plots

Numerical
Summaries
Parameters

Numerical summaries

- Numerical summary (statistic)
- A number or list of numbers calculated using the data (and only the data).
- Numerical summaries highlight important features of the data (shape, center, spread, outliers).
- Examples:
- Measures of center:
- Arithmetic mean

Numerical summaries

- Numerical summary (statistic)
- A number or list of numbers calculated using the data (and only the data).
- Numerical summaries highlight important features of the data (shape, center, spread, outliers).

Boxplots
Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantile Plots

Numerical
Summaries
Parameters

Numerical summaries

- Numerical summary (statistic)
- A number or list of numbers calculated using the data (and only the data).
- Numerical summaries highlight important features of the data (shape, center, spread, outliers).
- Examples:
- Measures of center:
- Arithmetic mean

Quantile-Quantile Plots

- Median

Numerical
Summaries
Parameters

- Mode

Numerical summaries

- Numerical summary (statistic)
- A number or list of numbers calculated using the data (and only the data).
- Numerical summaries highlight important features of the data (shape, center, spread, outliers).
- Examples:
- Measures of center:
- Arithmetic mean

Quantile-Quantile Plots

- Median

Numerical
Summaries
Parameters

- Mode
- Measures of spread:
- Sample variance

Numerical summaries

- Numerical summary (statistic)
- A number or list of numbers calculated using the data (and only the data).
- Numerical summaries highlight important features of the data (shape, center, spread, outliers).
- Examples:
- Measures of center:
- Arithmetic mean
- Median

Numerical
Summaries
Parameters

- Mode
- Measures of spread:
- Sample variance
- Sample standard deviation

Numerical summaries

- Numerical summary (statistic)
- A number or list of numbers calculated using the data (and only the data).
- Numerical summaries highlight important features of the data (shape, center, spread, outliers).
- Examples:
- Measures of center:
- Arithmetic mean
- Median

Numerical
Summaries
Parameters

- Mode
- Measures of spread:
- Sample variance
- Sample standard deviation
- Range

[^0]\Rightarrow All the duantiles together

Numerical summaries

- Numerical summary (statistic)
- A number or list of numbers calculated using the data (and only the data).
- Numerical summaries highlight important features of the data (shape, center, spread, outliers).
- Examples:
- Measures of center:
- Arithmetic mean
- Median

Numerical
Summaries
Parameters

- Mode
- Measures of spread:
- Sample variance
- Sample standard deviation
- Range
- IQR

Numerical summaries

- Numerical summary (statistic)
- A number or list of numbers calculated using the data (and only the data).
- Numerical summaries highlight important features of the data (shape, center, spread, outliers).
- Examples:
- Measures of center:
- Arithmetic mean
the da
- Median

Boxplots
Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantile Plots

Numerical
Summaries
Parameters

- Mode
- Measures of spread:
- Sample variance
- Sample standard deviation
- Range
- IQR
- Measures of shape:
- All the quantiles together
\qquad

Numerical summaries

- Numerical summary (statistic)
- A number or list of numbers calculated using the data
- Examples:
(and only the data).
- Numerical summaries highlight important features of the data (shape, center, spread, outliers).
- Measures of center:
- Arithmetic mean

Boxplots
Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantile Plots

Numerical
Summaries

- Median

Parameters

- Mode
- Measures of spread:
- Sample variance
- Sample standard deviation
- Range
- IQR
- Measures of shape:
- All the quantiles together
- Skew (beyond the scope of the class)

Numerical summaries

- Numerical summary (statistic)
- A number or list of numbers calculated using the data (and only the data).
- Numerical summaries highlight important features of the data (shape, center, spread, outliers).
- Examples:
- Measures of center:
- Arithmetic mean

Boxplots
Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantile Plots

Numerical
Summaries
Parameters

- Median
- Mode
- Measures of spread:
- Sample variance
- Sample standard deviation
- Range
- IQR
- Measures of shape:
- All the quantiles together
- Skew (beyond the scope of the class)
- Kurtosis (beyond the scope of the class)

Measures of center

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
0	1	1	2	3	5

Boxplots
Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantile Plots

Numerical
Summaries
Parameters

Measures of center

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
0	1	1	2	3	5

- Arithmetic mean:

Theoretical
Quantile-Quantile Plots

Numerical
Summaries
Parameters

Measures of center

$$
\begin{array}{cccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} \\
\hline 0 & 1 & 1 & 2 & 3 & 5
\end{array}
$$

Boxplots
Quantile-Quantile (QQ) Plots

Theoretical

- Arithmetic mean:
- $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$

Quantile-Quantile Plots

Numerical
Summaries
Parameters

Measures of center

$$
\begin{array}{cccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} \\
\hline 0 & 1 & 1 & 2 & 3 & 5
\end{array}
$$

Boxplots
Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantile Plots

Numerical
Summaries
Parameters

Measures of center

$$
\begin{array}{cccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} \\
\hline 0 & 1 & 1 & 2 & 3 & 5
\end{array}
$$

Boxplots
Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantile Plots

Numerical
Summaries
Parameters

- Median: $Q(0.5)$.

Measures of center

$$
\begin{array}{cccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} \\
\hline 0 & 1 & 1 & 2 & 3 & 5
\end{array}
$$

Boxplots
Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantile Plots

Numerical
Summaries
Parameters

- Median: $Q(0.5)$.
- A shortcut to calculating $Q(0.5)$ is:

Measures of center

$$
\begin{array}{cccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} \\
\hline 0 & 1 & 1 & 2 & 3 & 5
\end{array}
$$

Boxplots
Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantile Plots

Numerical
Summaries
Parameters

- Median: $Q(0.5)$.
- A shortcut to calculating $Q(0.5)$ is:
- $Q(0.5)=x_{\lceil n / 2\rceil}$ if n is odd

Measures of center

$$
\begin{array}{cccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} \\
\hline 0 & 1 & 1 & 2 & 3 & 5
\end{array}
$$

Boxplots
Quantile-Quantile (QQ) Plots

Theoretical

- Arithmetic mean:
- $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$
- Here, $\bar{x}=\frac{1}{6}(0+1+1+2+3+5)=2$
- Median: $Q(0.5)$.
- A shortcut to calculating $Q(0.5)$ is:
- $Q(0.5)=x_{\lceil n / 2\rceil}$ if n is odd
- $Q(0.5)=\left(x_{n / 2}+x_{n / 2+1}\right) / 2$ if n is even.
- Mode (of a discrete or categorical dataset)

Measures of center

$$
\begin{array}{cccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} \\
\hline 0 & 1 & 1 & 2 & 3 & 5
\end{array}
$$

Boxplots
Quantile-Quantile (QQ) Plots

Theoretical

- Arithmetic mean:
- $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$
- Here, $\bar{x}=\frac{1}{6}(0+1+1+2+3+5)=2$
- Median: $Q(0.5)$.
- A shortcut to calculating $Q(0.5)$ is:
- $Q(0.5)=x_{\lceil n / 2\rceil}$ if n is odd
- $Q(0.5)=\left(x_{n / 2}+x_{n / 2+1}\right) / 2$ if n is even.
- Here, $Q(0.5)=(1+2) / 2=1.5$
- the most frequently-occurring value

Numerical
Summaries
Parameters

Measures of center

$$
\begin{array}{cccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} \\
\hline 0 & 1 & 1 & 2 & 3 & 5
\end{array}
$$

Boxplots
Quantile-Quantile (QQ) Plots

Theoretical

- Arithmetic mean:

Quantile-Quantile Plots

- $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$
- Here, $\bar{x}=\frac{1}{6}(0+1+1+2+3+5)=2$
- Median: $Q(0.5)$.
- A shortcut to calculating $Q(0.5)$ is:
- $Q(0.5)=x_{\lceil n / 2\rceil}$ if n is odd
- $Q(0.5)=\left(x_{n / 2}+x_{n / 2+1}\right) / 2$ if n is even.
- Here, $Q(0.5)=(1+2) / 2=1.5$
- Mode (of a discrete or categorical dataset)

Numerical
Summaries
Parameters

Measures of center

$$
\begin{array}{cccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} \\
\hline 0 & 1 & 1 & 2 & 3 & 5
\end{array}
$$

Boxplots

Quantile-Quantile (QQ) Plots

Theoretical

- Arithmetic mean:

Quantile-Quantile Plots

- $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$
- Here, $\bar{x}=\frac{1}{6}(0+1+1+2+3+5)=2$
- Median: $Q(0.5)$.
- A shortcut to calculating $Q(0.5)$ is:
- $Q(0.5)=x_{\lceil n / 2\rceil}$ if n is odd
- $Q(0.5)=\left(x_{n / 2}+x_{n / 2+1}\right) / 2$ if n is even.
- Here, $Q(0.5)=(1+2) / 2=1.5$
- Mode (of a discrete or categorical dataset)
- the most frequently-occurring value

Measures of center

$$
\begin{array}{cccccc}
x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} \\
\hline 0 & 1 & 1 & 2 & 3 & 5
\end{array}
$$

Boxplots
Quantile-Quantile (QQ) Plots

Theoretical

- Arithmetic mean:

Quantile-Quantile Plots

- $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$
- Here, $\bar{x}=\frac{1}{6}(0+1+1+2+3+5)=2$
- Median: $Q(0.5)$.
- A shortcut to calculating $Q(0.5)$ is:
- $Q(0.5)=x_{\lceil n / 2\rceil}$ if n is odd
- $Q(0.5)=\left(x_{n / 2}+x_{n / 2+1}\right) / 2$ if n is even.
- Here, $Q(0.5)=(1+2) / 2=1.5$
- Mode (of a discrete or categorical dataset)
- the most frequently-occurring value
- Here, mode $=1$.

Measures of spread

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
x_{i}	0	1	1	2	3	5
$\frac{i-.5}{n}$.083	0.25	0.417	0.583	0.75	0.917

- Sample variance
- $s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$
- Here, $s^{2}=\frac{1}{6-1}\left[(0-2)^{2}+(1-2)^{2}+(1-2)^{2}+(2-\right.$

$$
\left.2)^{2}+(3-2)^{2}+(5-2)^{2}\right]=3.2
$$

- Sample standard deviation
- $s=\sqrt{s^{2}}=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}$
- Here, $s=\sqrt{3.2}=1.7889$
- Range
- Range = Maximum - Minimum
- Here, Range $=5-0=5$
- Interquartile range
- $\operatorname{IQR}=Q(0.75)-Q(0.25)$
- Here, $\operatorname{IQR}=3-1=2$.

Your turn: sensitivity to outliers

Compare:
Boxplots

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
x_{i}	0	1	1	2	3	5
$\frac{i-.5}{n}$.083	0.25	0.417	0.583	0.75	0.917

Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantile Plots

Numerical
Summaries
to:

	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}
x_{i}	0	1	1	2	3	817263489
$\frac{i-.5}{n}$.083	0.25	0.417	0.583	0.75	0.917

which measures of center and spread differ drastically between the x_{i} 's and the y_{i} 's? Which ones are about the same?

Answers: sensitivity to outliers

Data	x_{i}	y_{i}
Mean	2	1.3621×10^{8}
Median	1.5	1.5
Mode	1	1
Sample Variance	3.2	1.1132×10^{17}
Sample Std. Dev.	1.7889	3.3365×10^{8}
Range	5	8.1726×10^{8}
IQR	2	2

Sensitivity of numerical summaries

- Numerical summaries sensitive to outliers and skewness:
- Mean

Quantile-Quantile

- Sample variance
- Sample standard deviation
- Range

Parameters

- Less sensitive numerical summaries:
- Median
- Mode
- IQR

Outline

Boxplots

Quantile-Quantile

Numerical Summaries

Parameters

Statistics and parameters

- Statistic: numerical summary of data on the sample

Boxplots
Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantile Plots

Numerical
Summaries
Parameters

Statistics and parameters

- Statistic: numerical summary of data on the sample

Boxplots
Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantile Plots

Numerical
Summaries
Parameters

Statistics and parameters

- Statistic: numerical summary of data on the sample

Boxplots
Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantile Plots

Numerical

Summaries
Parameters

Statistics and parameters

- Statistic: numerical summary of data on the sample

Boxplots
Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantile Plots

Numerical
Summaries
Parameters

Statistics and parameters

- Statistic: numerical summary of data on the sample

Boxplots
Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantile Plots

Numerical
Summaries
Parameters

Statistics and parameters

- Statistic: numerical summary of data on the sample

Boxplots
Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantile Plots

Numerical
Summaries

- Population variance ("true" variance):

Statistics and parameters

- Statistic: numerical summary of data on the sample

Boxplots

- Parameter: numerical summary of a theoretical distribution or data on an entire population.
- Population mean ("true" mean):
- $\mu=\frac{1}{N} \sum_{i=1}^{N} x_{i}$ if N the finite population size.
- $\bar{x} \approx \mu$.
- Population variance ("true" variance):
- $\sigma^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}$ if N the finite population size.

Population standard deviation ("true" standard deviation)

Statistics and parameters

- Statistic: numerical summary of data on the sample

Boxplots

- Parameter: numerical summary of a theoretical distribution or data on an entire population.
- Population mean ("true" mean):
- $\mu=\frac{1}{N} \sum_{i=1}^{N} x_{i}$ if N the finite population size.
- $\bar{x} \approx \mu$.
- Population variance ("true" variance):
$-\sigma^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}$ if N the finite population size.
- $s^{2} \approx \sigma^{2}$.

Population standard deviation ("true" standard
deviation)

Statistics and parameters

- Statistic: numerical summary of data on the sample

Boxplots

- Parameter: numerical summary of a theoretical distribution or data on an entire population.
- Population mean ("true" mean):
- $\mu=\frac{1}{N} \sum_{i=1}^{N} x_{i}$ if N the finite population size.
- $\bar{x} \approx \mu$.
- Population variance ("true" variance):
$-\sigma^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}$ if N the finite population size.
- $s^{2} \approx \sigma^{2}$.
- Population standard deviation ("true" standard deviation):

Statistics and parameters

- Statistic: numerical summary of data on the sample
- Parameter: numerical summary of a theoretical

Boxplots
Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantile Plots

Numerical
Summaries

- Population variance ("true" variance):
- $\sigma^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}$ if N the finite population size.
- $s^{2} \approx \sigma^{2}$.
- Population standard deviation ("true" standard deviation):
- $\sigma=\sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}}$ if N is the finite population size.

Statistics and parameters

- Statistic: numerical summary of data on the sample
- Parameter: numerical summary of a theoretical

Boxplots
Quantile-Quantile (QQ) Plots

Theoretical
Quantile-Quantile Plots

Numerical
Summaries

- Population variance ("true" variance):
- $\sigma^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}$ if N the finite population size.
- $s^{2} \approx \sigma^{2}$.
- Population standard deviation ("true" standard deviation):
- $\sigma=\sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}}$ if N is the finite population size.
- $s \approx \sigma$.

[^0]: - Measures of shape:

