Descriptive Statistics: Part 1/2 (Ch 3)

Will Landau
lowa State University
January 24, 2013

What is descriptive statistics?

Outline

What is descriptive statistics?

What is descriptive statistics?

Graphical and
Tabular Displays
Graphical and Tabular Displays
Dot diagrams
Stem and leaf plots
Dot diagrams
Frequency tables
Histograms
Bar plots
Scatterplots
Frequency tables
Quantiles

Quantiles

What is descriptive statistics?

- Descriptive statistics: the use of plots and numerical summaries to describe data without drawing any formal conclusions.
- Descriptive statistics seeks to find the following features of datasets:
- Center: the point that the data are closest to on average
- Spread: how wide the data look, how varied the points are
- Shape (more on that when we get to plots)
- Outliers: points that lie way beyond the rest of the data.

Outline

What is descriptive statistics?

What is descriptive statistics?

Graphical and Tabular Displays

Graphical and
Tabular Displays

Dot diagrams
Stem and leaf plots
Dot diagrams
Stem and leaf plots
Frequency tables
Histograms
Bar plots
Scatterplots
Frequency tables

Histograms

Bar plots
Scatterplots

Quantiles

Gear data

What is descriptive statistics?

Graphical and
Tabular Displays
Dot diagrams
Stem and leaf plots
Frequency tables
Histograms
Bar plots
Scatterplots
Quantiles

Gears hung

New example: bullet data

Portraying Bullet Penetration Depths

Sale and Thom compared penetration depths for several types of .45 caliber bullets fired into oak wood from a distance of 15 feet. Table 3.1 gives the penetration depths (in mm from the target surface to the back of the bullets) for two bullet types. Figure 3.2 presents a corresponding pair of dot diagrams.

What is descriptive statistics?

Graphical and
Tabular Displays
Dot diagrams
Stem and leaf plots
Frequency tables
Histograms
Bar plots
Scatterplots

Table 3.1

Bullet Penetration Depths (mm)

230 Grain Jacketed Bullets	200 Grain Jacketed Bullets
$40.50,38.35,56.00,42.55$,	$63.80,64.65,59.50,60.70$,
$38.35,27.75,49.85,43.60$,	$61.30,61.50,59.80,59.10$,
$38.75,51.25,47.90,48.15$,	$62.95,63.55,58.65,71.70$,
$42.90,43.85,37.35,47.30$,	$63.30,62.65,67.75,62.30$,
$41.15,51.60,39.75,41.00$	$70.40,64.05,65.00,58.00$

Gear data

What is descriptive statistics?

Graphical and Tabular Displays
Dot diagrams
Stem and leaf plots
Frequency tables
Histograms
Bar plots
Scatterplots
Quantiles

200 Grain jacketed bullets

Stem and leaf plots: laid gears

[^0]
Back to back stem and leaf plots

Will Landau

Laid runouts
Hung runouts
What is descriptive statistics?

Graphical and
Tabular Displays

Dot diagrams
Stem and leaf plots
Frequency tables
Histograms
Bar plots
Scatterplots
Quantiles

Frequency Table: gear data

Frequency Table for Laid Gear Thrust Face Runouts

What is descriptive statistics?

Graphical and
Tabular Displays
Dot diagrams
Stem and leaf plots
Frequency tables
Histograms
Bar plots
Scatterplots
Quantiles

Frequency Table: bullet data, 200 grain

Frequency Table for 200 Grain Penetration Depths

Penetration Depth (mm)	Tally	Frequency	Relative Frequency	Cumulative Relative Frequency
$58.00-59.99$	HH	5	.25	.25
$60.00-61.99$	III	3	.15	.40
$62.00-63.99$	HH	6	.30	.70
$64.00-65.99$	III	3	.15	.85
$66.00-67.99$	I	1	.05	.90
$68.00-69.99$		0	0	.90
$70.00-71.99$	II	2	.10	1.00
		20	1.00	

What is descriptive statistics?

Graphical and Tabular Displays
Dot diagrams
Stem and leaf plots
Frequency tables
Histograms
Bar plots
Scatterplots
Quantiles

Histogram: bullet data, 200 grain

What is descriptive statistics?

Graphical and
Tabular Displays
Dot diagrams
Stem and leaf plots
Frequency tables
Histograms
Bar plots
Scatterplots
Quantiles

Penetration depth (mm)

Histogram guidelines

1. (continue to) use intervals of equal length,
2. show the entire vertical axis beginning at zero,
3. avoid breaking either axis,
4. keep a uniform scale across a given axis, and
5. center bars of appropriate heights at the midpoints of the (penetration depth)

Dot diagrams
Stem and leaf plots
Frequency tables
Histograms
Bar plots
Scatterplots intervals.

- Also: histograms are for continuous data only. The equivalent plot for discrete and categorical data is called a bar plot, featured next.

Discrete data: cars

```
## % latex table generated in R 2.15.1 by xtable 1.7-0 package
## % Mon Feb 25 23:40:38 2013
## \begin{table}[ht]
## \begin{center}
## \begin{tabular}{rll}
## \hline
## & mpg & cyl \\
## \hline
## Mazda RX4 & 21 & 6 \\
## Mazda RX4 Wag & 21 & 6 \\
## Datsun 710 & 22.8 & 4 \\
## Hornet 4 Drive & 21.4 & 6 \\
## Hornet Sportabout & 18.7 & 8 \\
## Valiant & 18.1 & 6 \\
## Duster 360 & 14.3 & 8 \\
## Merc 240D & 24.4 & 4 \\
## Merc 230 & 22.8 & 4 \\
## Merc 280 & 19.2 & 6 \\
## Merc 280C & 17.8 & 6 \\
## Merc 450SE & 16.4 & 8 \\
## Merc 450SL & 17.3 & 8 \\
## Merc 450SLC & 15.2 & 8 \\
## Cadillac Fleetwood & 10.4 & 8 \\
## ... & ... & ... \\
```

 Will Landau

Discrete data frequency table: cars data

Cylinders	Freq.	Relative Freq.	Cumulative Rel. Freq.
4	11	0.344	0.344
6	7	0.219	0.563
8	14	0.4375	1

Bar plot (not a histogram)

Bivariate data: cars

```
## % latex table generated in R 2.15.1 by xtable 1.
## % Mon Feb 25 23:40:38 2013
## \begin{table}[ht]
## \begin{center}
## \begin{tabular}{rll}
## \hline
## & mpg & wt \\
## \hline
## Mazda RX4 & 21 & 2.62 \\
## Mazda RX4 Wag & 21 & 2.875 \\
## Datsun 710 & 22.8 & 2.32 \\
## Hornet 4 Drive & 21.4 & 3.215 \\
## Hornet Sportabout & 18.7 & 3.44 \\
## Valiant & 18.1 & 3.46 \\
## Duster 360 & 14.3 & 3.57 \\
## Merc 240D & 24.4 & 3.19 \\
## Merc 230 & 22.8 & 3.15 \\

\section*{Scatterplot: mpg vs wt, cats data}


What is descriptive statistics?

Graphical and
Tabular Displays
Dot diagrams
Stem and leaf plots
Frequency tables
Histograms
Bar plots
Scatterplots
Quantiles

Weight (tons)

\section*{Distributional shapes}

Why do we plot data? To see the distributional shape.
What is descriptive statistics?

Graphical and
Tabular Displays


Bell-shaped


Right-skewed


Bimodal



Truncated

Dot diagrams
Stem and leaf plots
Frequency tables
Histograms
Bar plots
Scatterplots
Quantiles

\section*{Outline}

\section*{What is descriptive statistics?}

What is descriptive statistics?

Graphical and
Tabular Displays
Graphical and Tabular Displays
Dot diagrams
Stem and leaf plots
Dot diagrams
Frequency tables
Histograms
Bar plots
Scatterplots
Frequency tables
Quantiles

Quantiles

\section*{Percentiles and quantiles}
- The \(p\) 'th percentile of a dataset: a number greater

What is descriptive statistics? than \(p \%\) of the data and less than the rest.
- "You scored at the 90 'th percentile on the SAT" means that your score was higher than \(90 \%\) of the students who took the test and lower than the other \(10 \%\)
- "Zorbit was positioned at the 80th percentile of the list of fastest growing companies compiled by INC magazine." means Zorbit was growing faster than \(80 \%\) of the companies in the list and below the other \(20 \%\).
- The \(p\) quantile of a dataset: a percentile, except with \(p\) expressed as a decimal number, not a percentage.
- "You scored at the 0.9 quantile on the SAT"
- "Zorbit was positioned at the 0.8 quantile of the list compiled by INC magazine."

Graphical and
Tabular Displays
Dot diagrams
Stem and leaf plots
Frequency tables
Histograms
Bar plots
Scatterplots
Quantiles

\section*{Calculating quantiles of finite datasets: setup}
- Given:
- \(x_{1}, \ldots x_{n}\), an ordered list of numbers. This is the dataset.
- \(p\), a number between 0 and 1 .
- Goal: calculate \(Q(p)\), the \(p\) quantile of the dataset.

What is descriptive statistics?
- Notation:
- \(Q(p)\) is called the quantile function.
- \(\lfloor x\rfloor\) is called the floor function.
- \(\lceil x\rceil\) is called the ceiling function.

\section*{Calculating quantiles of finite datasets: procedure}
1. Let \(p_{i}=\frac{i-.5}{n}, i=1, \ldots, n\)
2. Define \(Q\left(p_{i}\right)=x_{i}\) for \(i=1, \ldots n\).
a. If \(p=p_{j}\) for some index \(j\), then \(Q(p)=Q\left(p_{j}\right)\).
b. Otherwise, linearly interpolate \(Q(p)\) :

What is descriptive statistics?

Graphical and
Tabular Displays
i. Let \(i^{\prime}=n p+.5\) (Solve \(p=\frac{i^{\prime}-.5}{n}\) for \(i^{\prime}\) ).
ii. Take \(Q(p)=\left(\left\lceil i^{\prime}\right\rceil-i^{\prime}\right) x_{\left\lfloor i^{\prime}\right\rfloor}+\left(i^{\prime}-\left\lfloor i^{\prime}\right\rfloor\right) x_{\left\lceil i^{\prime}\right\rceil}\)

\section*{Example: breaking strength (g) of towels}
```


% latex table generated in R 2.15.1 by xtable 1.

 V/ill I andal4
    ```

What is descriptive statistics?

Graphical and
Tabular Displays
Dot diagrams
Stem and leaf plots
Frequency tables
Histograms
Bar plots
Scatterplots
Quantiles


\section*{Example: breaking strength (g) of towels}


Your turn: calculate \(Q(0.5), Q(0.18)\), and \(Q(0.94)\).
```


% latex table generated in R 2.15.1 by xtable 1.7-0

% Mon Feb 25 23:40:38 2013

\begin{table}[ht]

\begin{center}

\begin{tabular}{ccc}

test \& $\frac{i - .5}{10}$ \& i'th smallest data po

\hline

1 \& 0.05 \& 7583

2 \& 0.15 \& 8527

3 \& 0.25 \& 8572

4 \& 0.35 \& 8577

5 \& 0.45 \& 9011

6 \& 0.55 \& 9165

7 \& 0.65 \& 9471

8 \& 0.75 \& 9614

9 \& 0.85 \& 9614

10 \& 0.95 \& 10688

\end{tabular}

\end{center}

```
\[
\begin{aligned}
i^{\prime} & =n p+.5 \\
& =10 \cdot 0.5+0.5=5.5 \\
Q(0.5) & =\left(\left\lceil i^{\prime}\right\rceil-i^{\prime}\right) x_{\left\lfloor i^{\prime}\right\rfloor}+\left(i^{\prime}-\left\lfloor i^{\prime}\right\rfloor\right) x_{\left\lceil i^{\prime}\right\rceil} \\
& =(\lceil 5.5\rceil-5.5) x_{\lfloor 5.5\rfloor}+(5.5-\lfloor 5.5\rfloor) x_{\lceil 5.5\rceil} \\
& =(6-5.5) x_{5}+(5.5-5) x_{6} \\
& =(0.5) 9011+(0.5) 9165 \\
& =9088
\end{aligned}
\]

\section*{\(Q(0.18)\)}
\[
\begin{aligned}
i^{\prime} & =n p+.5 \\
& =10 \cdot 0.18+0.5=2.3 \\
Q(0.18) & =\left(\left\lceil i^{\prime}\right\rceil-i^{\prime}\right) x_{\left\lfloor i^{\prime}\right\rfloor}+\left(i^{\prime}-\left\lfloor i^{\prime}\right\rfloor\right) x_{\left\lceil i^{\prime}\right\rceil} \\
& =(\lceil 2.3\rceil-2.3) x_{\lfloor 2.3\rfloor}+(2.3-\lfloor 2.3\rfloor) x_{\lceil 2.3\rceil} \\
& =(3-2.3) x_{2}+(2.3-2) x_{3} \\
& =(0.7) 8527+(0.3) 8572 \\
& =8540.5
\end{aligned}
\]

\section*{\(Q(0.94)\)}
\[
\begin{aligned}
i^{\prime} & =n p+.5 \\
& =10 \cdot 0.94+0.5=9.9 \\
Q(0.94) & =\left(\left\lceil i^{\prime}\right\rceil-i^{\prime}\right) x_{\left\lfloor i^{\prime}\right\rfloor}+\left(i^{\prime}-\left\lfloor i^{\prime}\right\rfloor\right) x_{\left\lceil i^{\prime}\right\rceil} \\
& =(\lceil 9.9\rceil-9.9) x_{\lfloor 9.9\rfloor}+(9.9-\lfloor 9.9\rfloor) x_{\lceil 9.9\rceil} \\
& =(10-9.9) x_{9}+(9.9-9) x_{10} \\
& =(0.1) 9614+(0.9) 10688 \\
& =10580.6
\end{aligned}
\]

\section*{More on quantiles}
- Special quantiles:
- Minimum: \(Q\left(\frac{1-.5}{n}\right)\)
- Lower Quartile: \(Q(0.25)\)
- Median: \(Q(0.5)\)
- Upper Quartile: \(Q(0.75)\)
- Maximum: \(Q\left(\frac{n-.5}{n}\right)\)

What is descriptive statistics?

Graphical and
Tabular Displays
Dot diagrams
Stem and leaf plots
Frequency tables
Histograms
Bar plots
Scatterplots
Quantiles
- Interquartile Range (IQR): \(Q(0.75)-Q(0.25)\)
- Most points should be below \(Q(0.75)+1.5 \cdot\) IQR and above \(Q(0.25)-1.5 \cdot\) IQR.
- Outlier: a point above \(Q(0.75)+1.5\) IIQR or below \(Q(0.25)\) - 1.5. IQR.```


[^0]:    | 0 | 5 | 8 | 9 | 9 | 9 | 9 |
    | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

    $\begin{array}{llllllllllllllllllllllllllllll}1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 & 4 & 4 & 4 & 5 & 5 & 5 & 5 & 6 & 7 & 7 & 8 & 9\end{array}$
    3
    0
    $\begin{array}{llllll}5 & 8 & 9 & 9 & 9 & 9\end{array}$
    $\begin{array}{llllllllllllllllllll}0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & 2 & 2 & 3 & 3 & 3 & 3 & 4 & 4 & 4\end{array}$
    $\begin{array}{llllllll}5 & 5 & 5 & 6 & 7 & 7 & 8 & 9\end{array}$
    7

