A codeless introduction to GPU parallelism

Will Landau

Iowa State University

September 23, 2013
Outline

A review of GPU parallelism

Examples of parallelism
 Vector addition
 Pairwise summation
 Matrix multiplication
 K-means clustering
 Markov chain Monte Carlo
Outline

A review of GPU parallelism

Examples of parallelism
 Vector addition
 Pairwise summation
 Matrix multiplication
 K-means clustering
 Markov chain Monte Carlo
The single instruction, multiple data (SIMD) paradigm

▶ SIMD: apply the same command to multiple places in a dataset.

\[
\text{for } (i = 0; \ i < 1e6; \ ++i) \ \\
\quad a[i] = b[i] + c[i];
\]

▶ On CPUs, the iterations of the loop run sequentially.
▶ With GPUs, we can easily run all 1,000,000 iterations simultaneously.

\[
\text{i = threadIdx.x;}
\quad a[i] = b[i] + c[i];
\]

▶ We can similarly parallelize a lot more than just loops.
CPU / GPU cooperation

- The CPU ("host") is in charge.
- The CPU sends computationally intensive instruction sets to the GPU ("device") just like a human uses a pocket calculator.

![Diagram showing CPU cores and GPU cores, connected by a memory and a graphics card.](image-url)
How GPU parallelism works

1. The CPU sends a command called a **kernel** to a GPU.
2. The GPU executes several duplicate realizations of this command, called **threads**.
 - These threads are grouped into bunches called **blocks**.
 - The sum total of all threads in a kernel is called a **grid**.

Toy example:
- CPU says: “Hey, GPU. Sum pairs of adjacent numbers. Use the array, (1, 2, 3, 4, 5, 6, 7, 8).”
- GPU thinks: “Sum pairs of adjacent numbers” is a kernel that I need to apply to the array, (1, 2, 3, 4, 5, 6, 8).
- The GPU spawns 2 blocks, each with 2 threads:

<table>
<thead>
<tr>
<th>Block</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thread</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Action</th>
<th>1 + 2</th>
<th>3 + 4</th>
<th>5 + 6</th>
<th>7 + 8</th>
</tr>
</thead>
</table>

- I could have also used 1 block with 4 threads and given the threads different pairs of numbers.
A codelss introduction to GPU parallelism

Examples of parallelism
- Vector addition
- Pairwise summation
- Matrix multiplication
- K-means clustering
- Markov chain Monte Carlo
Outline

A review of GPU parallelism

Examples of parallelism

Vector addition
Pairwise summation
Matrix multiplication
K-means clustering
Markov chain Monte Carlo
Vector addition

Say I have 2 vectors,

\[
a = \begin{bmatrix}
a_1 \\
a_2 \\
\vdots \\
a_n
\end{bmatrix} \quad b = \begin{bmatrix}
b_1 \\
b_2 \\
\vdots \\
b_n
\end{bmatrix}
\]

I want to compute their component-wise sum,

\[
c = \begin{bmatrix}
c_1 \\
c_2 \\
\vdots \\
c_n
\end{bmatrix} = \begin{bmatrix}
a_1 + b_1 \\
a_2 + b_2 \\
\vdots \\
a_n + b_n
\end{bmatrix}
\]
Vector addition

A grid of five threads performs vector addition on two vectors. Each thread performs the addition on two elements and produces a result. The results are then summed to produce the final output vector.
Vector addition

<table>
<thead>
<tr>
<th>Block 0: Thread 0:</th>
<th>6</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block 1: Thread 0:</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Block 2: Thread 0:</td>
<td>10</td>
<td>-5</td>
</tr>
<tr>
<td>Block 3: Thread 0:</td>
<td>-1</td>
<td>5</td>
</tr>
<tr>
<td>Block 4: Thread 0:</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Block 5: Thread 0:</td>
<td>7</td>
<td>9</td>
</tr>
</tbody>
</table>

14
6
5
4
8
16

Vector addition

Examples of parallelism

K-means clustering
Markov chain Monte Carlo
Vector addition

<table>
<thead>
<tr>
<th>Grid 0:</th>
<th>Block 0:</th>
<th>Thread 0:</th>
<th>6</th>
<th>8</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Block 1:</td>
<td>Thread 1:</td>
<td>4</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thread 2:</td>
<td>10</td>
<td>-5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thread 0:</td>
<td>-1</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thread 1:</td>
<td>3</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thread 2:</td>
<td>7</td>
<td>9</td>
<td>16</td>
</tr>
</tbody>
</table>
Pairwise summation

Let’s take the pairwise sum of the vector,

\[(5, 2, -3, 1, 1, 8, 2, 6)\]

using 1 block of 4 threads.
Pairwise summation

5 2 -3 1 1 8 2 6

Thread 0
Pairwise summation

\[
\begin{align*}
5 & \quad 2 & \quad -3 & \quad 1 & \quad 1 & \quad 8 & \quad 2 & \quad 6 \\
6 & \quad 10
\end{align*}
\]

Thread 1
Pairwise summation

\[
\begin{array}{ccccccc}
5 & 2 & -3 & 1 & 1 & 8 & 2 \\
6 & 10 & -1 & & & & \\
\end{array}
\]

Thread 2
Pairwise summation

\[
\begin{align*}
5 & \quad 2 & \quad -3 & \quad 1 & \quad 1 & \quad 8 & \quad 2 & \quad 6 \\
6 & \quad 10 & \quad -1 & \quad 7
\end{align*}
\]

Thread 3
Pairwise summation

\[
\begin{array}{cccccccc}
5 & 2 & -3 & 1 & 1 & 8 & 2 & 6 \\
6 & 10 & -1 & 7 \\
\end{array}
\]

Synchronize threads
Synchronizing threads

Synchronization: waiting for all parallel tasks to reach a checkpoint before allowing any of them to continue.

- Threads from the same block can be synchronized easily.
- In general, do not try to synchronize threads from different blocks. It’s possible, but extremely inefficient.
Pairwise summation

\[
\begin{align*}
5 & \quad 2 & \quad -3 & \quad 1 & \quad 1 & \quad 8 & \quad 2 & \quad 6 \\
6 & \quad 10 & \quad -1 & \quad 7 \\
5 & & & & & & & \\
\end{align*}
\]

Thread 0
Pairwise summation

\[
\begin{array}{ccccccccc}
5 & 2 & -3 & 1 & 1 & 8 & 2 & 6 \\
6 & 10 & -1 & 7 \\
5 & 17 \\
\end{array}
\]

Thread 1
Pairwise summation

\[\begin{align*}
5 & \quad 2 & \quad -3 & \quad 1 & \quad 1 & \quad 8 & \quad 2 & \quad 6 \\
6 & \quad 10 & \quad -1 & \quad 7 \\
5 & \quad 17
\end{align*} \]

Synchronize Threads
Pairwise summation

\[
\begin{bmatrix}
5 & 2 & -3 & 1 & 1 & 8 & 2 & 6 \\
6 & 10 & -1 & 7
\end{bmatrix}
\]

Thread 0

\[
\begin{bmatrix}
5 & 17 \\
22
\end{bmatrix}
\]
Compare the pairwise sum to the sequential sum

The pairwise sum requires only $\log_2(n)$ sequential steps, while the sequential sum requires $n - 1$ sequential steps.
Reductions and scans

- **Reductions**
 - Pairwise sum and pairwise multiplication are examples of reductions.
 - **Reduction**: an algorithm that applies some binary operation on a vector to produce a scalar.

- **Scans**
 - **Scan (prefix sum)**: an operation on a vector that produces a sequence of partial reductions.
 - Example: computing the sequence of partial sums in pairwise fashion.
Matrix multiplication

- Take an $m \times n$ matrix, $A = (a_{ij})$, and an $n \times p$ matrix, $B = (b_{jk})$. Compute $C = A \cdot B$:

 - Write A in terms of its rows: $A = \begin{bmatrix} a_1 \ \vdots \ a_m \end{bmatrix}$ where $a_i = [a_{i1} \ \cdots \ a_{in}]$.
 - Write B in terms of its columns: $B = \begin{bmatrix} b_{1k} \ \vdots \ b_{nk} \end{bmatrix}$ where $b_k = [b_{k1} \ \cdots \ b_{kp}]$.

- Compute $C = A \cdot B$ by taking the product of each row of A with each column of B:

 $$C = A \cdot B = \begin{bmatrix} (a_1 \cdot b_{11}) & \cdots & (a_1 \cdot b_{1p}) \\ \vdots & \ddots & \vdots \\ (a_m \cdot b_{11}) & \cdots & (a_m \cdot b_{1p}) \end{bmatrix}$$
Parallelizing matrix multiplication

- Entry \((i, k)\) of matrix \(C\) is

\[
c_{ik} = a_{i1}b_{1k} + a_{i2}b_{2k} + \cdots + a_{in}b_{nk}
= c_{i1k} + c_{i2k} + \cdots + c_{ink}
\]

- Assign block \((i, k)\) to compute \(c_{ik}\).
 1. Spawn \(n\) threads.
 2. Tell the \(j^{th}\) thread to compute \(c_{ijk} = a_{ij} \cdot b_{jk}\).
 3. Synchronize threads to make sure we have finished calculating \(c_{i1k}, c_{i2k}, \ldots, c_{ink}\) before continuing.
 4. Compute \(c_{ik} = \sum_{j=1}^{n} c_{ijk}\) as a pairwise sum.
Matrix multiplication

- Say I want to compute $A \cdot B$, where:

$$A = \begin{bmatrix} 1 & 2 \\ -1 & 5 \\ 7 & -9 \end{bmatrix} \quad B = \begin{bmatrix} 8 & 8 & 7 \\ 3 & 5 & 2 \end{bmatrix}$$

- I write the multiplication as an array of products:

$$C = \begin{bmatrix} (\begin{bmatrix} 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 8 \\ 3 \end{bmatrix}) & (\begin{bmatrix} 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 8 \\ 5 \end{bmatrix}) & (\begin{bmatrix} 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 7 \\ 2 \end{bmatrix}) \\ (\begin{bmatrix} -1 & 5 \end{bmatrix} \cdot \begin{bmatrix} 8 \\ 3 \end{bmatrix}) & (\begin{bmatrix} -1 & 5 \end{bmatrix} \cdot \begin{bmatrix} 8 \\ 5 \end{bmatrix}) & (\begin{bmatrix} -1 & 5 \end{bmatrix} \cdot \begin{bmatrix} 7 \\ 2 \end{bmatrix}) \\ (\begin{bmatrix} 7 & -9 \end{bmatrix} \cdot \begin{bmatrix} 8 \\ 3 \end{bmatrix}) & (\begin{bmatrix} 7 & -9 \end{bmatrix} \cdot \begin{bmatrix} 8 \\ 5 \end{bmatrix}) & (\begin{bmatrix} 7 & -9 \end{bmatrix} \cdot \begin{bmatrix} 7 \\ 2 \end{bmatrix}) \end{bmatrix}$$
Matrix multiplication

- We don’t need to synchronize blocks because they operate independently.

\[
\begin{align*}
\text{Block (0, 0)}: & \quad \begin{pmatrix} 1 & 2 \\ 3 & 8 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 3 & 8 \end{pmatrix} \\
\text{Block (0, 1)}: & \quad \begin{pmatrix} -1 & 5 \\ 3 & 8 \end{pmatrix} \cdot \begin{pmatrix} -1 & 5 \\ 3 & 8 \end{pmatrix} \\
\text{Block (0, 2)}: & \quad \begin{pmatrix} 7 & -9 \\ 3 & 8 \end{pmatrix} \cdot \begin{pmatrix} 7 & -9 \\ 3 & 8 \end{pmatrix} \\
\text{Block (1, 0)}: & \quad \begin{pmatrix} 1 & 2 \\ 5 & 7 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 5 & 7 \end{pmatrix} \\
\text{Block (1, 1)}: & \quad \begin{pmatrix} -1 & 5 \\ 5 & 7 \end{pmatrix} \cdot \begin{pmatrix} -1 & 5 \\ 5 & 7 \end{pmatrix} \\
\text{Block (1, 2)}: & \quad \begin{pmatrix} 7 & -9 \\ 3 & 8 \end{pmatrix} \cdot \begin{pmatrix} 7 & -9 \\ 3 & 8 \end{pmatrix} \\
\text{Block (2, 0)}: & \quad \begin{pmatrix} 1 & 2 \\ 5 & 7 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 5 & 7 \end{pmatrix} \\
\text{Block (2, 1)}: & \quad \begin{pmatrix} -1 & 5 \\ 5 & 7 \end{pmatrix} \cdot \begin{pmatrix} -1 & 5 \\ 5 & 7 \end{pmatrix} \\
\text{Block (2, 2)}: & \quad \begin{pmatrix} 7 & -9 \\ 3 & 8 \end{pmatrix} \cdot \begin{pmatrix} 7 & -9 \\ 3 & 8 \end{pmatrix}
\end{align*}
\]
Matrix multiplication

- Consider block (0, 0), which computes $\begin{bmatrix} 1 & 2 \end{bmatrix} \cdot \begin{bmatrix} 8 \\ 3 \end{bmatrix}$
Matrix multiplication
Matrix multiplication
Lloyd’s K-means algorithm

- Cluster N vectors in Euclidian space into K groups.
Step 1: choose initial cluster centers.

- The circles are the cluster means, the squares are the data points, and the color indicates the cluster.
Step 2: assign each data point (square) to its closest center (circle).
Step 3: update the cluster centers to be the within-cluster data means.
Repeat step 2: reassign points to their closest cluster centers.

▶ ... and repeat until convergence.
Parallel K-means

- Step 2: assign points to closest cluster centers.
 - Spawn N blocks with K threads each.
 - Let thread (n, k) compute the distance between data point n and cluster center k.
 - Synchronize threads.
 - Let thread $(n, 1)$ assign data point n to its nearest cluster center.

- Step 3: recompute cluster centers.
 - Spawn one block for each cluster.
 - Within each block, compute the mean of the data in the corresponding cluster.
Markov chain Monte Carlo

- Consider a bladder cancer data set:
 - Rates of death from bladder cancer of white males from 2000 to 2004 in each county in the USA.

- Let:
 - \(y_k \) = number of observed deaths in county \(k \).
 - \(n_k \) = the number of person-years in county \(k \) divided by 100,000.
 - \(\theta_k \) = expected number of deaths per 100,000 person-years.

- The model:

\[
y_k \overset{\text{ind}}{\sim} \text{Poisson}(n_k \cdot \theta_k)
\]
\[
\theta_k \overset{\text{iid}}{\sim} \text{Gamma}(\alpha, \beta)
\]
\[
\alpha \sim \text{Uniform}(0, a_0)
\]
\[
\beta \sim \text{Uniform}(0, b_0)
\]

- Also assume \(\alpha \) and \(\beta \) are independent and fix \(a_0 \) and \(b_0 \).
Full conditional distributions

- We want to sample from the joint posterior,

\[
p(\theta, \alpha, \beta \mid y) \propto p(y \mid \theta, \alpha, \beta)p(\theta, \alpha, \beta)
\]

\[
\propto p(y \mid \theta, \alpha, \beta)p(\theta \mid \alpha, \beta)p(\alpha, \beta)
\]

\[
\propto p(y \mid \theta, \alpha, \beta)p(\theta \mid \alpha, \beta)p(\alpha)p(\beta)
\]

\[
\propto \prod_{k=1}^{K} [p(y_k \mid \theta_k, n_k)p(\theta_k \mid \alpha, \beta)]p(\alpha)p(\beta)
\]

\[
\propto \prod_{k=1}^{K} \left[e^{-n_k \theta_k} \theta_k^{y_k} \frac{\beta^\alpha}{\Gamma(\alpha)} \theta_k^{\alpha-1} e^{-\theta_k \beta} \right] I(0 < \alpha < a_0) I(0 < \beta < b_0)
\]

- We iteratively sample from the full conditional distributions.

\[
\alpha \leftarrow p(\alpha \mid y, \theta, \beta)
\]

\[
\beta \leftarrow p(\beta \mid y, \theta, \alpha)
\]

\[
\theta_k \leftarrow p(\theta_k \mid y, \theta_{-k}, \alpha, \beta) \quad \Leftarrow \text{IN PARALLEL!}
\]
Full conditional distributions

\[p(\theta_k \mid y, \theta_{-k}, \alpha, \beta) \propto p(\theta, \alpha, \beta \mid y) \]
\[\propto e^{-n_k \theta_k} \theta_k^{y_k} \theta_k^{\alpha-1} e^{-\theta_k \beta} \]
\[= \theta_k^{y_k+\alpha-1} e^{-\theta_k (n_k+\beta)} \]
\[\propto \text{Gamma}(y_k + \alpha, n_k + \beta) \]
Conditional distributions of α and β

\[p(\alpha \mid y, \theta, \beta) \propto p(\theta, \alpha, \beta \mid y) \]
\[\propto \prod_{k=1}^{K} \left[\theta_k^{\alpha-1} \frac{\beta^\alpha}{\Gamma(\alpha)} \right] I(0 < \alpha < a_0) \]
\[= \left(\prod_{k=1}^{K} \theta_k \right)^\alpha \beta^{K\alpha} \Gamma(\alpha)^{-K} I(0 < \alpha < a_0) \]

\[p(\beta \mid y, \theta, \alpha) \propto p(\theta, \alpha, \beta \mid y) \]
\[\propto \prod_{k=1}^{K} \left[e^{-\theta_k \beta} \beta^\alpha \right] I(0 < \beta < b_0) \]
\[= \beta^{K\alpha} e^{-\beta \sum_{k=1}^{K} \theta_k} I(0 < \beta < b_0) \]
\[\propto \text{Gamma} \left(K\alpha + 1, \sum_{k=1}^{K} \theta_k \right) I(0 < \beta < b_0) \]
Summarizing the Gibbs sampler

1. Sample θ from from its full conditional.
 - Draw the θ_k’s *in parallel* from independent
 Gamma($y_k + \alpha$, $n_k + \beta$) distributions.
 - In other words, assign each thread to draw an individual
 θ_k from its Gamma($y_k + \alpha$, $n_k + \beta$) distribution.

2. Sample α from its full conditional using a random walk
 Metropolis step.

3. Sample β from its full conditional (truncated Gamma)
 using the inverse cdf method if b_0 is low or a
 non-truncated Gamma if b_0 is high.
Preview: a bare bones CUDA C workflow

```c
#include <stdio.h>
#include <stdlib.h>
#include <cuda.h>
#include <cuda_runtime.h>

__global__ void some_kernel(...) {
...

int main(void) {
    // Declare all variables.
    ...
    // Allocate host memory.
    ...
    // Dynamically allocate device memory for GPU results.
    ...
    // Write to host memory.
    ...
    // Copy host memory to device memory.
    ...
```
Preview: a bare bones CUDA C workflow

```c
// Execute kernel on the device.
some_kernel<<<num_blocks, num_threads_per_block>>>(...);

// Write GPU results in device memory back to host memory.
...

// Free dynamically-allocated host memory
...

// Free dynamically-allocated device memory
...
```

Will Landau (Iowa State University)
Outline

A review of GPU parallelism

Examples of parallelism
 Vector addition
 Pairwise summation
 Matrix multiplication
 K-means clustering
 Markov chain Monte Carlo
Resources

2. Prof. Jarad Niemi’s STAT 544 lecture notes.
That’s all for today.

▶ Series materials are available at http://will-landau.com/gpu.