CUDA C: race
conditions,
atomics, locks,
mutex, and warps

Will Landau

CUDA C: race conditions, atomics, locks,
mutex, and warps

Will Landau

lowa State University

October 21, 2013

Will Landau (lowa State University) CUDA C: race conditions, atomics, locks, mu October 21, 2013

CUDA C: race

OUtl I ne conditions,

atomics, locks,
mutex, and warps

Will Landau

Race conditions

Brute force fixes: atomics, locks, and mutex

Warps

Will Landau (lowa State University) CUDA C: race conditions, atomics, locks, mu October 21, 2013 2/33

Race conditions

. CUDA C: race
O Utl I ne conditions,
atomics, locks,
mutex, and warps

Will Landau

Race conditions

Race conditions

Will Landau (lowa State University) CUDA C: race conditions, atomics, locks, mu October 21, 2013 3/33

Race conditions

L CUDA C: race
Race Condltlons conditions,
atomics, locks,
mutex, and warps

Will Landau

» Let int *x point to global memory. *x++ happens in 3
steps:
1. Read the value in *x into a register.
2. Add 1 to the value read in step 1.
3. Write the result back to *x.

> If we want parallel threads A and B to both increment
*x, then we want something like:

Thread A reads the value, 7, from *x.
Thread A adds 1 to its value, 7, to make 8.
Thread A writes its value, 8, back to *x.
Thread B reads the value, 8, from *x.
Thread B adds 1 to its value, 8, to make 9.
Thread B writes the value, 9, back to *x.

Race conditions

SAEANE i

Will Landau (lowa State University) CUDA C: race conditions, atomics, locks, mu October 21, 2013

Race conditions

L CUDA C: race
Race Condltlons conditions,
atomics, locks,
mutex, and warps

Will Landau

Race conditions

> But since the threads are parallel, we might actually
get:

Thread A reads the value, 7, from *x.

Thread B reads the value, 7, from *x.

Thread A adds 1 to its value, 7, to make 8.

Thread A writes its value, 8, back to *x.

Thread B adds 1 to its value, 7, to make 8.

Thread B writes the value, 8, back to *x.

SARRANE ol S

Will Landau (lowa State University) CUDA C: race conditions, atomics, locks, mu October 21, 2013

Race conditions

. . CUDA C: race
Example: race_condition.cu conditions,
atomics, locks,
mutex, and warps

Will Landau
1| #include <stdio.h>
2| #include <stdlib.h> Race conditions
3|#include <cuda.h>
4| #include <cuda_-runtime.h>
5
6| -_global__ void colonel(int xa_-d){
7 *xa.d += 1;
8|}
9
10| int main(){
11
12 int a =0, *xa.d;
13

14 cudaMalloc ((void*x) &a_-d, sizeof(int));

15 cudaMemcpy (a-d, &a, sizeof(int), cudaMemcpyHostToDevice);
16
17 float elapsedTime;

18 cudaEvent_t start, stop;

19 cudaEventCreate(&start);

20 cudaEventCreate(&stop);

21 cudaEventRecord(start, 0);
22
23 colonel <<<1000,1000>>>(a-d);

Will Landau (lowa State University) CUDA C: race conditions, atomics, locks, mu October 21, 2013 6 /33

Race conditions

. . CUDA C: race
Example: race_condition.cu conditions,
atomics, locks,
mutex, and warps

24 cudaEventRecord(stop, 0); Will Landau

25 cudaEventSynchronize(stop);
26 cudaEventElapsedTime(&elapsedTime, start, stop); RaceYeonditions
27 cudaEventDestroy(start);

28 cudaEventDestroy(stop);

29 printf ("GPU Time elapsed: %f seconds\n", elapsedTime/1000.0);
30
31
32 cudaMemcpy(&a, a-d, sizeof(int), cudaMemcpyDeviceToHost);
33
34 printf("a = %d\n", a);
35 cudaFree(a.d);

36

37|}

1|> nvcc race_condition.cu —o race_condition
2|> ./race_condition

3| GPU Time elapsed: 0.000148 seconds

4| a = 88

» Since we started with a at 0, we should have gotten a
= 1000 - 1000 = 1,000, 000.

Will Landau (lowa State University) CUDA C: race conditions, atomics, locks, mu October 21, 2013 7 /33

Race conditions

CUDA C: race
conditions,

Race conditions
atomics, locks,

mutex, and warps

Will Landau

Race conditions

» Race condition: A computational hazard that arises
when the results of the program depend on the timing
of uncontrollable events, such as the execution order or

threads.
» Many race conditions are caused by violations of the

SIMD paradigm.
» Atomic operations and locks are brute force ways to fix

race conditions.

Will Landau (lowa State University) CUDA C: race conditions, atomics, locks, mu October 21, 2013

Brute force fixes: atomics, locks, and mutex
CUDA C: race
conditions,

Outline
atomics, locks,
mutex, and warps

Will Landau

Brute force fixes:
atomics, locks, a
mutex

Brute force fixes: atomics, locks, and mutex

Will Landau (lowa State University) CUDA C: race conditions, atomics, locks, mu October 21, 2013 9 /33

Brute force fixes: atomics, locks, and mutex

Atomics

» Atomic operation: an operation that forces otherwise
parallel threads into a bottleneck, executing the
operation one at a time.

» In colonel(), replace
*a_d += 1;
with an atomic function,
atomicAdd(a_d, 1);

to fix the race condition in race_condition.cu.

Will Landau (lowa State University) CUDA C: race conditions, atomics, locks, mu October 21, 2013

CUDA C: race
conditions,
atomics, locks,
mutex, and warps

Will Landau

Brute force fixes:
atomics, locks, and
mutex

Brute force fixes: atomics, locks, and mutex

. . . CUDA C: race
race_condition_fixed.cu conditions,
atomics, locks,
mutex, and warps

Will Landau
1| #include <stdio.h>
2| #include <stdlib.h>
3|#include <cuda.h>
4| #include <cuda_runtime.h> Brute force fixes:
5 atomics, locks, a
6| -_global__ void colonel(int xa_-d){ mutex
7 atomicAdd(a.d, 1);
8|}
9
10| int main(){
11
12 int a =0, *xa.d;
13

14 cudaMalloc ((void*x) &a_-d, sizeof(int));

15 cudaMemcpy (a-d, &a, sizeof(int), cudaMemcpyHostToDevice);
16
17 float elapsedTime;

18 cudaEvent_t start, stop;

19 cudaEventCreate(&start);

20 cudaEventCreate(&stop);

21 cudaEventRecord(start, 0);
22
23 colonel <<<1000,1000>>>(a-d);

Will Landau (lowa State University) CUDA C: race conditions, atomics, locks, mu October 21, 2013 11 /33

Brute force fixes: atomics, locks, and mutex

race_condition_fixed.cu

24
25
26
27
28
29
30
31
32
33
34
35
36
37

CUDA C: race
conditions,
atomics, locks,
mutex, and warps

Will Landau

cudaEventRecord(stop,

0);

cudaEventSynchronize(stop);
cudaEventElapsedTime(&elapsedTime, start, stop);
cudaEventDestroy(start);

cudaEventDestroy(stop

)

printf ("GPU Time elapsed: %f seconds\n", elapsedTime/1000.0);

cudaMemcpy(&a, a-d, sizeof(int), cudaMemcpyDeviceToHost);

printf("a = %d\n", a);
cudaFree(a-d);

Brute force fixes:
atomics, locks, and
mutex

Will Landau (lowa State University)

CUDA C: race conditions, atomics, locks, mu

October 21, 2013 12 /33

Brute force fixes: atomics, locks, and mutex

. . . CUDA C: race
race_condition_fixed.cu conditions,
atomics, locks,
mutex, and warps

Wi andau
1|> nvcc race_condition_fixed.cu —arch sm_20 —o e
race_condition_fixed
2 > / race,doncition,fixed Brute force fixes:
3|GPU Time elapsed: 0.01485 seconds :St":xcs"“ks'a”d
4/a = 1000000

» We got the right answer this time, and execution was
slower because we forced the threads to execute the
addition sequentially.

» If you're using builtin atomic functions like
atomicAdd (), use the —arch sm_20 flag in
compilation.

» This is to make sure you're using CUDA compute
capability (version) 2.0 or above.

Will Landau (lowa State University) CUDA C: race conditions, atomics, locks, mu October 21, 2013

Brute force fixes: atomics, locks, and mutex

CUDA C builtin atomic functions econditons,
e, ond s
» With CUDA compute capability 2.0 or above, you can Will Landau
use:
» atomicAdd())
» atomicSub() o el 2
» atomicMin() mutex
> atomicMax()
» atomicInc()
» atomicDec()
» atomicAdd ()
» atomicExch()
> atomicCAS()
» atomicAnd()
» atomicOr ()
» atomicXor ()

» For documentation, refer to the CUDA C programming
guide.

Will Landau (lowa State University) CUDA C: race conditions, atomics, locks, mu October 21, 2013 14 / 33

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Brute force fixes: atomics, locks, and mutex

. . . CUDA C: race
atomicCAS(int *address, int compare, conditions,
atomics, locks,
int val): needed for locks mutex, and warps
Will Landau

Brute force fixes:
atomics, locks, and
mutex

1. Read the value, 014, located at address.

(old == compare) ? val old;

2. *address =
3. Return old.

Will Landau (lowa State University) CUDA C: race conditions, atomics, locks, mu October 21, 2013 15 / 33

Brute force fixes: atomics, locks, and mutex

Locks and mutex

» Lock: a mechanism in parallel computing that forces an
entire segment of code to be executed atomically.
> mutex
» “mutual exclusion”, the principle behind locks.
» While a thread is running code inside a lock, it shuts all
the other threads out of the lock.

1| _._global__ void someKernel(void){
2 Lock mylock;

3

4| // some parallel code
5

6| mylock.lock();

7 // some sequential code
8 mylock . unlock () ;

9

10| // some parallel code
11|}

CUDA C: race
conditions,
atomics, locks,
mutex, and warps

Will Landau

Brute force fixes:
atomics, locks, and
mutex

Will Landau (lowa State University) CUDA C: race conditions, atomics, locks, mu October 21, 2013 16 / 33

Brute force fixes: atomics, locks, and mutex

The concept

Get to the lock first
and reserve it.

|

Thread A: ——

Get to the lock
second and get
stuck in the lock's

loop. ‘

Unlock th . -

ook Do intruction
it set Il (parallel).

Reserve the

lock.

Thread B:
Wait for thread A

to unlock the lock.

Will Landau (lowa State University)

CUDA C: race conditions, atomics, locks, mu

October 21, 2013

CUDA C: race
conditions,
atomics, locks,
mutex, and warps

Will Landau

Brute force fixes:
atomics, locks, and
mutex

Brute force fixes: atomics, locks, and mutex

Lock.h

-
CO®NOUTHWN K

11
12
13
14
15
16
17

19
20
21
22
23

struct Lock {
int smutex;
Lock () {
int state = 0;
cudaMalloc ((void*x) &mutex, sizeof(int)));
cudaMemcpy (mutex, &state, sizeof(int), cudaMemcpyHostToDevice));
“Lock (){
cudaFree(mutex);
}
_.device__ void lock(){
while (atomicCAS (mutex, 0, 1) != 0);
}
_-device__ void unlock(){
atomicExch (mutex, 0);
}
+i

CUDA C: race
conditions,
atomics, locks,
mutex, and warps

Will Landau

Brute force fixes:
atomics, locks, and
mutex

Will Landau (lowa State University) CUDA C: race conditions, atomics, locks, mu October 21, 2013 8 /33

Brute force fixes: atomics, locks, and mutex

A closer look at the lock function T
atomics, locks,
mutex, and warps

15| __device__ void lock(){

16| while (atomicCAS(mutex, 0, 1) != 0); Will Landay
17]}
Brute force fixes:
atomics, locks, a

» In pseudocode: mutex

1| __device void lock(){

2 repeatq{

3 do atomically{

4

5 if (mutex = 0){

6 mutex = 1;

7 return_value = 0;

8

9

10 else if(mutex = 1){

11 return_value = 1;

12

13 } do atomically

14

15 if(return_value = 0)

16 exit loop;

17

18 } repeat

9]} lock

Will Landau (lowa State University) CUDA C: race conditions, atomics, locks, mu October 21, 2013 19 / 33

Brute force fixes: atomics, locks, and mutex

Example: counting the number of blocks

» Compare the two kernels:

CUDA C: race
conditions,
atomics, locks,
mutex, and warps

Will Landau

5| __global__ void blockCounterUnlocked (int =
nblocks){

6 if (threadldx.x = 0){

7 xnblocks = sxnblocks + 1;

8}

9}

Brute force fixes:
atomics, locks, and
mutex

11| -_global__ void blockCounterl(Lock lock, int =x

nblocks){
12 if (threadldx.x = 0){
13 lock .lock ();
14 *nblocks = *nblocks + 1;
15 lock .unlock();
16| }
17|}

Will Landau (lowa State University) CUDA C: race conditions, atomics, locks, mu

October 21, 2013 20 /33

Brute force fixes: atomics, locks, and mutex

blockCounter.cu

CUDA C: race
conditions,
atomics, locks,

mutex, and warps

Will Landau

Brute force fixes:
atomics, locks, a
mutex

1| #include " ../common/lock.h"

2| #define NBLOCKS_.TRUE 512

3| #define NTHREADS_TRUE 512 = 2

4

5| --global__ void blockCounterUnlocked(int snblocks){

6 if (threadldx.x = 0){

7 *nblocks = xnblocks + 1;

8| 1}

of }

10

11| -_global__ void blockCounterl(Lock lock, int =xnblocks){
12 if(threadldx.x = 0){

13 lock . lock ();

14 xnblocks = xnblocks + 1;

15 lock . unlock();

16 }

17| }

18

19| int main(){

20 int nblocks_host, xnblocks_dev;

21 Lock lock;

22 float elapsedTime;

23 cudaEvent_t start, stop;

24

25 cudaMalloc ((void*x) &nblocks_dev, sizeof(int));

26

27 blockCounterUnlocked

28

29 nblocks_host = 0;

30 cudaMemcpy(nblocks_dev , &nblocks_host, sizeof(int),

cudaMemcpyHostToDevice);

Will Landau (lowa State University) CUDA C: race conditions, atomics, locks, mu

October 21, 2013 21 /33

Brute force fixes: atomics, locks, and mutex

blockCounter.cu

32
33
34
35
36
37
38
39
40
41

43
44
45

46

47
48
49
50

cudaEventCreate(&start);
cudaEventCreate(&stop);
cudaEventRecord(start, 0);

blockCounterUnlocked <<<NBLOCKS_TRUE, NTHREADS_TRUE>>>(nblocks_dev);

cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&elapsedTime, start, stop);

cudaEventDestroy(start);
cudaEventDestroy(stop);

cudaMemcpy (&nblocks_host, nblocks_dev, sizeof(int),
cudaMemcpyDeviceToHost);

printf (" blockCounterUnlocked <<< %d, %d >>> () counted %d blocks in
%f ms.\n",
NBLOCKS_TRUE,
NTHREADS_TRUE,
nblocks_host ,
elapsedTime);

CUDA C: race
conditions,
atomics, locks,
mutex, and warps

Will Landau

Brute force fixes:
atomics, locks, a
mutex

Will Landau (lowa State University) CUDA C: race conditions, atomics, locks, mu October 21, 2013 22 /33

Brute force fixes: atomics, locks, and mutex

blockCounter.cu

51
52
53
54

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

70

71
72
73
74
75
76
7

blockCounterl

nblocks_host = 0;
cudaMemcpy(nblocks_dev , &nblocks_host, sizeof(int),
cudaMemcpyHostToDevice);

cudaEventCreate(&start);
cudaEventCreate(&stop);
cudaEventRecord(start, 0);

blockCounterl <<<NBLOCKS_TRUE, NTHREADS_TRUE>>>(lock , nblocks_-dev);

cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&elapsedTime, start, stop);

cudaEventDestroy(start);
cudaEventDestroy(stop);

cudaMemcpy (&nblocks_host, nblocks_dev, sizeof(int),
cudaMemcpyDeviceToHost

printf(”"blockCounterl <<< %d, %d >>> () counted %d blocks in %f ms
An",
NBLOCKS_TRUE,
NTHREADS_TRUE,
nblocks_host ,
elapsedTime);

cudaFree(nblocks_dev);

CUDA C: race
conditions,
atomics, locks,
mutex, and warps

Will Landau

Brute force fixes:
atomics, locks, a
mutex

Will Landau (lowa State University) CUDA C: race conditions, atomics, locks, mu October 21, 2013 23 /33

Brute force fixes: atomics, locks, and mutex

CUDA C: race
blOCkCOllnt er . Cll conditions,
atomics, locks,
mutex, and warps

Will Landau

Brute force fixes:
atomics, locks, and
mutex

78|> nvcc blockCounter.
79|> ./blockCounter

80| blockCounterUnlocked <<< 512, 1024 >>> () counted 47 blocks in
0.057920 ms.

81| blockCounterl <<< 512, 1024 >>> () counted 512 blocks

cu —arch sm_20 —o blockCounter

in 0.636064 ms.

Will Landau (lowa State University) CUDA C: race conditions, atomics, locks, mu October 21, 2013 24 /33

Brute force fixes: atomics, locks, and mutex

blockCounter.cu pauses indefinitely with this Cfﬁf@ﬁf&i‘:&
atomics, locks,
kernel mutex, and warps
Will Landau
Brute force fixes:
1| _global__ void blockCounter2(Lock lock, int = atomics, locks, and
nblocks){
2 lock.lock();
3 if (threadldx.x = 0){
4 *nblocks = xnblocks + 1;
5/}
6 lock .unlock();
7}

» Why? warps.

Will Landau (lowa State University) CUDA C: race conditions, atomics, locks, mu October 21, 2013 25 /33

Warps

. CUDA C: race
O Utl I ne conditions,
atomics, locks,
mutex, and warps

Will Landau

Warps

Will Landau (lowa State University) CUDA C: race conditions, atomics, locks, mu October 21, 2013 6 / 33

Warps

CUDA C: race
Wa rpS conditions,

atomics, locks,

» Warp: a group of 32 threads in the same block that I, SN T
execute in lockstep. Wil Landau
» That is, they synchronize after every step (as if
__syncthreads() is called as often as possible).
» All blocks are partitioned into warps.

Threads in the same warp:

Thread A: Stpl | Watt | Step2 \

Thread B: Step 1 Step 2| Wait
‘ Wait

Time

Will Landau (lowa State University) CUDA C: race conditions, atomics, locks, mu October 21, 2013 27 /33

Warps

Warps

Threads in different warps:

Step 2
Thread A: Step 1 P
2
Thread B: Step 1 Step
Time
Will Landau (lowa State University) CUDA C: race conditions, atomics, locks, mu

CUDA C: race
conditions,
atomics, locks,
mutex, and warps

Will Landau

October 21, 2013 28 /33

Warps

CUDA C: race
Wa rpS a n d IOC kS conditions,
atomics, locks,
mutex, and warps

Will Landau

Threads in different warps:

Unlock the . .
antremert ok Do intruction
} V set Il (parallel).

Thread A:

Get to the lock

second and get

stuck in the lock's Reserve the

loop. i lock.
Thread B:

Wait for thread A

to unlock the lock.

Time

Will Landau (lowa State University) CUDA C: race conditions, atomics, locks, mu October 21, 2013 29 /33

Warps

CUDA C: race
Wa rpS a n d IOC kS conditions,
atomics, locks,
mutex, and warps

Will Landau

Threads in the same warp:

Get to the lock first

and block all the Wait for thread B
other threads. .
i to exit lock's loop.
Thread A:
Get to the lock
second and get
faginthelocks Wait for thread A
nlock the lock.
Thread B: l to unlock the locl

Time

Will Landau (lowa State University) CUDA C: race conditions, atomics, locks, mu October 21, 2013 30/ 33

Warps

CUDA C: race

OUtl I ne conditions,

atomics, locks,
mutex, and warps

Will Landau

Race conditions

Brute force fixes: atomics, locks, and mutex

Warps

Will Landau (lowa State University) CUDA C: race conditions, atomics, locks, mu October 21, 2013 31/33

Warps

Resou rces CUDA C: race

conditions,
atomics, locks,
mutex, and warps

Will Landau
> Texts:

1. J. Sanders and E. Kandrot. CUDA by Example.
Addison-Wesley, 2010.

2. D. Kirk, W.H. Wen-mei, and W. Hwu. Programming
massively parallel processors: a hands-on approach.
Morgan Kaufmann, 2010.

» Code from today:

» race_condition.cu
» race_condition_fixed.cu
» blockCounter.cu

» Dot product with atomic operations:

» dot_product_atomic_builtin.cu
» dot_product_atomic_lock.cu

Will Landau (lowa State University) CUDA C: race conditions, atomics, locks, mu October 21, 2013

http://will-landau.com/gpu/Code/CUDA_C/race_condition/race_condition.cu
http://will-landau.com/gpu/Code/CUDA_C/race_condition_fixed/race_condition_fixed.cu
http://will-landau.com/gpu/Code/CUDA_C/blockCounter/blockCounter.cu
http://will-landau.com/gpu/Code/CUDA_C/dot_product_atomic_builtin/dot_product_atomic_builtin.cu
http://will-landau.com/gpu/Code/CUDA_C/dot_product_atomic_lock/dot_product_atomic_lock.cu

Warps

That's all for today.

» Series materials are available at
http://will-landau.com/gpu.

Will Landau (lowa State University) CUDA C: race conditions, atomics, locks, mu

CUDA C: race
conditions,
atomics, locks,
mutex, and warps

Will Landau

October 21, 2013 33 /33

http://will-landau.com/gpu

	Race conditions
	Brute force fixes: atomics, locks, and mutex
	Warps

